Metamath Proof Explorer


Theorem lsmub1

Description: Subgroup sum is an upper bound of its arguments. (Contributed by NM, 6-Feb-2014) (Revised by Mario Carneiro, 19-Apr-2016)

Ref Expression
Hypothesis lsmub1.p ˙ = LSSum G
Assertion lsmub1 T SubGrp G U SubGrp G T T ˙ U

Proof

Step Hyp Ref Expression
1 lsmub1.p ˙ = LSSum G
2 eqid Base G = Base G
3 2 subgss T SubGrp G T Base G
4 subgsubm U SubGrp G U SubMnd G
5 2 1 lsmub1x T Base G U SubMnd G T T ˙ U
6 3 4 5 syl2an T SubGrp G U SubGrp G T T ˙ U