Description: Subgroup sum is an upper bound of its arguments. (Contributed by NM, 6-Feb-2014) (Revised by Mario Carneiro, 19-Apr-2016)
Ref | Expression | ||
---|---|---|---|
Hypothesis | lsmub1.p | ||
Assertion | lsmub1 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lsmub1.p | ||
2 | eqid | ||
3 | 2 | subgss | |
4 | subgsubm | ||
5 | 2 1 | lsmub1x | |
6 | 3 4 5 | syl2an |