Metamath Proof Explorer


Theorem lsmub1

Description: Subgroup sum is an upper bound of its arguments. (Contributed by NM, 6-Feb-2014) (Revised by Mario Carneiro, 19-Apr-2016)

Ref Expression
Hypothesis lsmub1.p ˙=LSSumG
Assertion lsmub1 TSubGrpGUSubGrpGTT˙U

Proof

Step Hyp Ref Expression
1 lsmub1.p ˙=LSSumG
2 eqid BaseG=BaseG
3 2 subgss TSubGrpGTBaseG
4 subgsubm USubGrpGUSubMndG
5 2 1 lsmub1x TBaseGUSubMndGTT˙U
6 3 4 5 syl2an TSubGrpGUSubGrpGTT˙U