Step |
Hyp |
Ref |
Expression |
1 |
|
lsmub1.p |
|- .(+) = ( LSSum ` G ) |
2 |
|
simp3 |
|- ( ( S e. ( SubGrp ` G ) /\ T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) -> U e. ( SubGrp ` G ) ) |
3 |
1
|
lsmless12 |
|- ( ( ( U e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) /\ ( S C_ U /\ T C_ U ) ) -> ( S .(+) T ) C_ ( U .(+) U ) ) |
4 |
3
|
ex |
|- ( ( U e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) -> ( ( S C_ U /\ T C_ U ) -> ( S .(+) T ) C_ ( U .(+) U ) ) ) |
5 |
2 2 4
|
syl2anc |
|- ( ( S e. ( SubGrp ` G ) /\ T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) -> ( ( S C_ U /\ T C_ U ) -> ( S .(+) T ) C_ ( U .(+) U ) ) ) |
6 |
1
|
lsmidm |
|- ( U e. ( SubGrp ` G ) -> ( U .(+) U ) = U ) |
7 |
6
|
3ad2ant3 |
|- ( ( S e. ( SubGrp ` G ) /\ T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) -> ( U .(+) U ) = U ) |
8 |
7
|
sseq2d |
|- ( ( S e. ( SubGrp ` G ) /\ T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) -> ( ( S .(+) T ) C_ ( U .(+) U ) <-> ( S .(+) T ) C_ U ) ) |
9 |
5 8
|
sylibd |
|- ( ( S e. ( SubGrp ` G ) /\ T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) -> ( ( S C_ U /\ T C_ U ) -> ( S .(+) T ) C_ U ) ) |
10 |
1
|
lsmub1 |
|- ( ( S e. ( SubGrp ` G ) /\ T e. ( SubGrp ` G ) ) -> S C_ ( S .(+) T ) ) |
11 |
10
|
3adant3 |
|- ( ( S e. ( SubGrp ` G ) /\ T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) -> S C_ ( S .(+) T ) ) |
12 |
|
sstr2 |
|- ( S C_ ( S .(+) T ) -> ( ( S .(+) T ) C_ U -> S C_ U ) ) |
13 |
11 12
|
syl |
|- ( ( S e. ( SubGrp ` G ) /\ T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) -> ( ( S .(+) T ) C_ U -> S C_ U ) ) |
14 |
1
|
lsmub2 |
|- ( ( S e. ( SubGrp ` G ) /\ T e. ( SubGrp ` G ) ) -> T C_ ( S .(+) T ) ) |
15 |
14
|
3adant3 |
|- ( ( S e. ( SubGrp ` G ) /\ T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) -> T C_ ( S .(+) T ) ) |
16 |
|
sstr2 |
|- ( T C_ ( S .(+) T ) -> ( ( S .(+) T ) C_ U -> T C_ U ) ) |
17 |
15 16
|
syl |
|- ( ( S e. ( SubGrp ` G ) /\ T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) -> ( ( S .(+) T ) C_ U -> T C_ U ) ) |
18 |
13 17
|
jcad |
|- ( ( S e. ( SubGrp ` G ) /\ T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) -> ( ( S .(+) T ) C_ U -> ( S C_ U /\ T C_ U ) ) ) |
19 |
9 18
|
impbid |
|- ( ( S e. ( SubGrp ` G ) /\ T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) -> ( ( S C_ U /\ T C_ U ) <-> ( S .(+) T ) C_ U ) ) |