Description: Subgroup sum is idempotent. (Contributed by NM, 6-Feb-2014) (Revised by Mario Carneiro, 21-Jun-2014) (Proof shortened by AV, 27-Dec-2023)
Ref | Expression | ||
---|---|---|---|
Hypothesis | lsmub1.p | |- .(+) = ( LSSum ` G ) |
|
Assertion | lsmidm | |- ( U e. ( SubGrp ` G ) -> ( U .(+) U ) = U ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lsmub1.p | |- .(+) = ( LSSum ` G ) |
|
2 | subgsubm | |- ( U e. ( SubGrp ` G ) -> U e. ( SubMnd ` G ) ) |
|
3 | 1 | smndlsmidm | |- ( U e. ( SubMnd ` G ) -> ( U .(+) U ) = U ) |
4 | 2 3 | syl | |- ( U e. ( SubGrp ` G ) -> ( U .(+) U ) = U ) |