Step |
Hyp |
Ref |
Expression |
1 |
|
lsmub1.p |
|- .(+) = ( LSSum ` G ) |
2 |
|
elfvdm |
|- ( U e. ( SubMnd ` G ) -> G e. dom SubMnd ) |
3 |
|
eqid |
|- ( Base ` G ) = ( Base ` G ) |
4 |
3
|
submss |
|- ( U e. ( SubMnd ` G ) -> U C_ ( Base ` G ) ) |
5 |
|
eqid |
|- ( +g ` G ) = ( +g ` G ) |
6 |
3 5 1
|
lsmvalx |
|- ( ( G e. dom SubMnd /\ U C_ ( Base ` G ) /\ U C_ ( Base ` G ) ) -> ( U .(+) U ) = ran ( x e. U , y e. U |-> ( x ( +g ` G ) y ) ) ) |
7 |
2 4 4 6
|
syl3anc |
|- ( U e. ( SubMnd ` G ) -> ( U .(+) U ) = ran ( x e. U , y e. U |-> ( x ( +g ` G ) y ) ) ) |
8 |
5
|
submcl |
|- ( ( U e. ( SubMnd ` G ) /\ x e. U /\ y e. U ) -> ( x ( +g ` G ) y ) e. U ) |
9 |
8
|
3expb |
|- ( ( U e. ( SubMnd ` G ) /\ ( x e. U /\ y e. U ) ) -> ( x ( +g ` G ) y ) e. U ) |
10 |
9
|
ralrimivva |
|- ( U e. ( SubMnd ` G ) -> A. x e. U A. y e. U ( x ( +g ` G ) y ) e. U ) |
11 |
|
eqid |
|- ( x e. U , y e. U |-> ( x ( +g ` G ) y ) ) = ( x e. U , y e. U |-> ( x ( +g ` G ) y ) ) |
12 |
11
|
fmpo |
|- ( A. x e. U A. y e. U ( x ( +g ` G ) y ) e. U <-> ( x e. U , y e. U |-> ( x ( +g ` G ) y ) ) : ( U X. U ) --> U ) |
13 |
10 12
|
sylib |
|- ( U e. ( SubMnd ` G ) -> ( x e. U , y e. U |-> ( x ( +g ` G ) y ) ) : ( U X. U ) --> U ) |
14 |
13
|
frnd |
|- ( U e. ( SubMnd ` G ) -> ran ( x e. U , y e. U |-> ( x ( +g ` G ) y ) ) C_ U ) |
15 |
7 14
|
eqsstrd |
|- ( U e. ( SubMnd ` G ) -> ( U .(+) U ) C_ U ) |
16 |
3 1
|
lsmub1x |
|- ( ( U C_ ( Base ` G ) /\ U e. ( SubMnd ` G ) ) -> U C_ ( U .(+) U ) ) |
17 |
4 16
|
mpancom |
|- ( U e. ( SubMnd ` G ) -> U C_ ( U .(+) U ) ) |
18 |
15 17
|
eqssd |
|- ( U e. ( SubMnd ` G ) -> ( U .(+) U ) = U ) |