Metamath Proof Explorer


Theorem smndlsmidm

Description: The direct product is idempotent for submonoids. (Contributed by AV, 27-Dec-2023)

Ref Expression
Hypothesis lsmub1.p = ( LSSum ‘ 𝐺 )
Assertion smndlsmidm ( 𝑈 ∈ ( SubMnd ‘ 𝐺 ) → ( 𝑈 𝑈 ) = 𝑈 )

Proof

Step Hyp Ref Expression
1 lsmub1.p = ( LSSum ‘ 𝐺 )
2 elfvdm ( 𝑈 ∈ ( SubMnd ‘ 𝐺 ) → 𝐺 ∈ dom SubMnd )
3 eqid ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 )
4 3 submss ( 𝑈 ∈ ( SubMnd ‘ 𝐺 ) → 𝑈 ⊆ ( Base ‘ 𝐺 ) )
5 eqid ( +g𝐺 ) = ( +g𝐺 )
6 3 5 1 lsmvalx ( ( 𝐺 ∈ dom SubMnd ∧ 𝑈 ⊆ ( Base ‘ 𝐺 ) ∧ 𝑈 ⊆ ( Base ‘ 𝐺 ) ) → ( 𝑈 𝑈 ) = ran ( 𝑥𝑈 , 𝑦𝑈 ↦ ( 𝑥 ( +g𝐺 ) 𝑦 ) ) )
7 2 4 4 6 syl3anc ( 𝑈 ∈ ( SubMnd ‘ 𝐺 ) → ( 𝑈 𝑈 ) = ran ( 𝑥𝑈 , 𝑦𝑈 ↦ ( 𝑥 ( +g𝐺 ) 𝑦 ) ) )
8 5 submcl ( ( 𝑈 ∈ ( SubMnd ‘ 𝐺 ) ∧ 𝑥𝑈𝑦𝑈 ) → ( 𝑥 ( +g𝐺 ) 𝑦 ) ∈ 𝑈 )
9 8 3expb ( ( 𝑈 ∈ ( SubMnd ‘ 𝐺 ) ∧ ( 𝑥𝑈𝑦𝑈 ) ) → ( 𝑥 ( +g𝐺 ) 𝑦 ) ∈ 𝑈 )
10 9 ralrimivva ( 𝑈 ∈ ( SubMnd ‘ 𝐺 ) → ∀ 𝑥𝑈𝑦𝑈 ( 𝑥 ( +g𝐺 ) 𝑦 ) ∈ 𝑈 )
11 eqid ( 𝑥𝑈 , 𝑦𝑈 ↦ ( 𝑥 ( +g𝐺 ) 𝑦 ) ) = ( 𝑥𝑈 , 𝑦𝑈 ↦ ( 𝑥 ( +g𝐺 ) 𝑦 ) )
12 11 fmpo ( ∀ 𝑥𝑈𝑦𝑈 ( 𝑥 ( +g𝐺 ) 𝑦 ) ∈ 𝑈 ↔ ( 𝑥𝑈 , 𝑦𝑈 ↦ ( 𝑥 ( +g𝐺 ) 𝑦 ) ) : ( 𝑈 × 𝑈 ) ⟶ 𝑈 )
13 10 12 sylib ( 𝑈 ∈ ( SubMnd ‘ 𝐺 ) → ( 𝑥𝑈 , 𝑦𝑈 ↦ ( 𝑥 ( +g𝐺 ) 𝑦 ) ) : ( 𝑈 × 𝑈 ) ⟶ 𝑈 )
14 13 frnd ( 𝑈 ∈ ( SubMnd ‘ 𝐺 ) → ran ( 𝑥𝑈 , 𝑦𝑈 ↦ ( 𝑥 ( +g𝐺 ) 𝑦 ) ) ⊆ 𝑈 )
15 7 14 eqsstrd ( 𝑈 ∈ ( SubMnd ‘ 𝐺 ) → ( 𝑈 𝑈 ) ⊆ 𝑈 )
16 3 1 lsmub1x ( ( 𝑈 ⊆ ( Base ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubMnd ‘ 𝐺 ) ) → 𝑈 ⊆ ( 𝑈 𝑈 ) )
17 4 16 mpancom ( 𝑈 ∈ ( SubMnd ‘ 𝐺 ) → 𝑈 ⊆ ( 𝑈 𝑈 ) )
18 15 17 eqssd ( 𝑈 ∈ ( SubMnd ‘ 𝐺 ) → ( 𝑈 𝑈 ) = 𝑈 )