Step |
Hyp |
Ref |
Expression |
1 |
|
lsmcl.s |
|
2 |
|
lsmcl.p |
|
3 |
|
lmodabl |
|
4 |
3
|
3ad2ant1 |
|
5 |
1
|
lsssubg |
|
6 |
5
|
3adant3 |
|
7 |
1
|
lsssubg |
|
8 |
7
|
3adant2 |
|
9 |
2
|
lsmsubg2 |
|
10 |
4 6 8 9
|
syl3anc |
|
11 |
|
eqid |
|
12 |
11 2
|
lsmelval |
|
13 |
6 8 12
|
syl2anc |
|
14 |
13
|
adantr |
|
15 |
|
simpll1 |
|
16 |
|
simplr |
|
17 |
|
simpll2 |
|
18 |
|
simprl |
|
19 |
|
eqid |
|
20 |
19 1
|
lssel |
|
21 |
17 18 20
|
syl2anc |
|
22 |
|
simpll3 |
|
23 |
|
simprr |
|
24 |
19 1
|
lssel |
|
25 |
22 23 24
|
syl2anc |
|
26 |
|
eqid |
|
27 |
|
eqid |
|
28 |
|
eqid |
|
29 |
19 11 26 27 28
|
lmodvsdi |
|
30 |
15 16 21 25 29
|
syl13anc |
|
31 |
15 17 5
|
syl2anc |
|
32 |
15 22 7
|
syl2anc |
|
33 |
26 27 28 1
|
lssvscl |
|
34 |
15 17 16 18 33
|
syl22anc |
|
35 |
26 27 28 1
|
lssvscl |
|
36 |
15 22 16 23 35
|
syl22anc |
|
37 |
11 2
|
lsmelvali |
|
38 |
31 32 34 36 37
|
syl22anc |
|
39 |
30 38
|
eqeltrd |
|
40 |
|
oveq2 |
|
41 |
40
|
eleq1d |
|
42 |
39 41
|
syl5ibrcom |
|
43 |
42
|
rexlimdvva |
|
44 |
14 43
|
sylbid |
|
45 |
44
|
impr |
|
46 |
45
|
ralrimivva |
|
47 |
26 28 19 27 1
|
islss4 |
|
48 |
47
|
3ad2ant1 |
|
49 |
10 46 48
|
mpbir2and |
|