Metamath Proof Explorer


Theorem lsmcl

Description: The sum of two subspaces is a subspace. (Contributed by NM, 4-Feb-2014) (Revised by Mario Carneiro, 19-Apr-2016)

Ref Expression
Hypotheses lsmcl.s S=LSubSpW
lsmcl.p ˙=LSSumW
Assertion lsmcl WLModTSUST˙US

Proof

Step Hyp Ref Expression
1 lsmcl.s S=LSubSpW
2 lsmcl.p ˙=LSSumW
3 lmodabl WLModWAbel
4 3 3ad2ant1 WLModTSUSWAbel
5 1 lsssubg WLModTSTSubGrpW
6 5 3adant3 WLModTSUSTSubGrpW
7 1 lsssubg WLModUSUSubGrpW
8 7 3adant2 WLModTSUSUSubGrpW
9 2 lsmsubg2 WAbelTSubGrpWUSubGrpWT˙USubGrpW
10 4 6 8 9 syl3anc WLModTSUST˙USubGrpW
11 eqid +W=+W
12 11 2 lsmelval TSubGrpWUSubGrpWuT˙UdTeUu=d+We
13 6 8 12 syl2anc WLModTSUSuT˙UdTeUu=d+We
14 13 adantr WLModTSUSaBaseScalarWuT˙UdTeUu=d+We
15 simpll1 WLModTSUSaBaseScalarWdTeUWLMod
16 simplr WLModTSUSaBaseScalarWdTeUaBaseScalarW
17 simpll2 WLModTSUSaBaseScalarWdTeUTS
18 simprl WLModTSUSaBaseScalarWdTeUdT
19 eqid BaseW=BaseW
20 19 1 lssel TSdTdBaseW
21 17 18 20 syl2anc WLModTSUSaBaseScalarWdTeUdBaseW
22 simpll3 WLModTSUSaBaseScalarWdTeUUS
23 simprr WLModTSUSaBaseScalarWdTeUeU
24 19 1 lssel USeUeBaseW
25 22 23 24 syl2anc WLModTSUSaBaseScalarWdTeUeBaseW
26 eqid ScalarW=ScalarW
27 eqid W=W
28 eqid BaseScalarW=BaseScalarW
29 19 11 26 27 28 lmodvsdi WLModaBaseScalarWdBaseWeBaseWaWd+We=aWd+WaWe
30 15 16 21 25 29 syl13anc WLModTSUSaBaseScalarWdTeUaWd+We=aWd+WaWe
31 15 17 5 syl2anc WLModTSUSaBaseScalarWdTeUTSubGrpW
32 15 22 7 syl2anc WLModTSUSaBaseScalarWdTeUUSubGrpW
33 26 27 28 1 lssvscl WLModTSaBaseScalarWdTaWdT
34 15 17 16 18 33 syl22anc WLModTSUSaBaseScalarWdTeUaWdT
35 26 27 28 1 lssvscl WLModUSaBaseScalarWeUaWeU
36 15 22 16 23 35 syl22anc WLModTSUSaBaseScalarWdTeUaWeU
37 11 2 lsmelvali TSubGrpWUSubGrpWaWdTaWeUaWd+WaWeT˙U
38 31 32 34 36 37 syl22anc WLModTSUSaBaseScalarWdTeUaWd+WaWeT˙U
39 30 38 eqeltrd WLModTSUSaBaseScalarWdTeUaWd+WeT˙U
40 oveq2 u=d+WeaWu=aWd+We
41 40 eleq1d u=d+WeaWuT˙UaWd+WeT˙U
42 39 41 syl5ibrcom WLModTSUSaBaseScalarWdTeUu=d+WeaWuT˙U
43 42 rexlimdvva WLModTSUSaBaseScalarWdTeUu=d+WeaWuT˙U
44 14 43 sylbid WLModTSUSaBaseScalarWuT˙UaWuT˙U
45 44 impr WLModTSUSaBaseScalarWuT˙UaWuT˙U
46 45 ralrimivva WLModTSUSaBaseScalarWuT˙UaWuT˙U
47 26 28 19 27 1 islss4 WLModT˙UST˙USubGrpWaBaseScalarWuT˙UaWuT˙U
48 47 3ad2ant1 WLModTSUST˙UST˙USubGrpWaBaseScalarWuT˙UaWuT˙U
49 10 46 48 mpbir2and WLModTSUST˙US