Metamath Proof Explorer


Theorem lsmcl

Description: The sum of two subspaces is a subspace. (Contributed by NM, 4-Feb-2014) (Revised by Mario Carneiro, 19-Apr-2016)

Ref Expression
Hypotheses lsmcl.s S = LSubSp W
lsmcl.p ˙ = LSSum W
Assertion lsmcl W LMod T S U S T ˙ U S

Proof

Step Hyp Ref Expression
1 lsmcl.s S = LSubSp W
2 lsmcl.p ˙ = LSSum W
3 lmodabl W LMod W Abel
4 3 3ad2ant1 W LMod T S U S W Abel
5 1 lsssubg W LMod T S T SubGrp W
6 5 3adant3 W LMod T S U S T SubGrp W
7 1 lsssubg W LMod U S U SubGrp W
8 7 3adant2 W LMod T S U S U SubGrp W
9 2 lsmsubg2 W Abel T SubGrp W U SubGrp W T ˙ U SubGrp W
10 4 6 8 9 syl3anc W LMod T S U S T ˙ U SubGrp W
11 eqid + W = + W
12 11 2 lsmelval T SubGrp W U SubGrp W u T ˙ U d T e U u = d + W e
13 6 8 12 syl2anc W LMod T S U S u T ˙ U d T e U u = d + W e
14 13 adantr W LMod T S U S a Base Scalar W u T ˙ U d T e U u = d + W e
15 simpll1 W LMod T S U S a Base Scalar W d T e U W LMod
16 simplr W LMod T S U S a Base Scalar W d T e U a Base Scalar W
17 simpll2 W LMod T S U S a Base Scalar W d T e U T S
18 simprl W LMod T S U S a Base Scalar W d T e U d T
19 eqid Base W = Base W
20 19 1 lssel T S d T d Base W
21 17 18 20 syl2anc W LMod T S U S a Base Scalar W d T e U d Base W
22 simpll3 W LMod T S U S a Base Scalar W d T e U U S
23 simprr W LMod T S U S a Base Scalar W d T e U e U
24 19 1 lssel U S e U e Base W
25 22 23 24 syl2anc W LMod T S U S a Base Scalar W d T e U e Base W
26 eqid Scalar W = Scalar W
27 eqid W = W
28 eqid Base Scalar W = Base Scalar W
29 19 11 26 27 28 lmodvsdi W LMod a Base Scalar W d Base W e Base W a W d + W e = a W d + W a W e
30 15 16 21 25 29 syl13anc W LMod T S U S a Base Scalar W d T e U a W d + W e = a W d + W a W e
31 15 17 5 syl2anc W LMod T S U S a Base Scalar W d T e U T SubGrp W
32 15 22 7 syl2anc W LMod T S U S a Base Scalar W d T e U U SubGrp W
33 26 27 28 1 lssvscl W LMod T S a Base Scalar W d T a W d T
34 15 17 16 18 33 syl22anc W LMod T S U S a Base Scalar W d T e U a W d T
35 26 27 28 1 lssvscl W LMod U S a Base Scalar W e U a W e U
36 15 22 16 23 35 syl22anc W LMod T S U S a Base Scalar W d T e U a W e U
37 11 2 lsmelvali T SubGrp W U SubGrp W a W d T a W e U a W d + W a W e T ˙ U
38 31 32 34 36 37 syl22anc W LMod T S U S a Base Scalar W d T e U a W d + W a W e T ˙ U
39 30 38 eqeltrd W LMod T S U S a Base Scalar W d T e U a W d + W e T ˙ U
40 oveq2 u = d + W e a W u = a W d + W e
41 40 eleq1d u = d + W e a W u T ˙ U a W d + W e T ˙ U
42 39 41 syl5ibrcom W LMod T S U S a Base Scalar W d T e U u = d + W e a W u T ˙ U
43 42 rexlimdvva W LMod T S U S a Base Scalar W d T e U u = d + W e a W u T ˙ U
44 14 43 sylbid W LMod T S U S a Base Scalar W u T ˙ U a W u T ˙ U
45 44 impr W LMod T S U S a Base Scalar W u T ˙ U a W u T ˙ U
46 45 ralrimivva W LMod T S U S a Base Scalar W u T ˙ U a W u T ˙ U
47 26 28 19 27 1 islss4 W LMod T ˙ U S T ˙ U SubGrp W a Base Scalar W u T ˙ U a W u T ˙ U
48 47 3ad2ant1 W LMod T S U S T ˙ U S T ˙ U SubGrp W a Base Scalar W u T ˙ U a W u T ˙ U
49 10 46 48 mpbir2and W LMod T S U S T ˙ U S