Metamath Proof Explorer


Theorem lsmsubg2

Description: The sum of two subgroups is a subgroup. (Contributed by NM, 4-Feb-2014) (Proof shortened by Mario Carneiro, 19-Apr-2016)

Ref Expression
Hypothesis lsmcom.s ˙=LSSumG
Assertion lsmsubg2 GAbelTSubGrpGUSubGrpGT˙USubGrpG

Proof

Step Hyp Ref Expression
1 lsmcom.s ˙=LSSumG
2 simp2 GAbelTSubGrpGUSubGrpGTSubGrpG
3 simp3 GAbelTSubGrpGUSubGrpGUSubGrpG
4 eqid CntzG=CntzG
5 simp1 GAbelTSubGrpGUSubGrpGGAbel
6 4 5 2 3 ablcntzd GAbelTSubGrpGUSubGrpGTCntzGU
7 1 4 lsmsubg TSubGrpGUSubGrpGTCntzGUT˙USubGrpG
8 2 3 6 7 syl3anc GAbelTSubGrpGUSubGrpGT˙USubGrpG