Database
BASIC ALGEBRAIC STRUCTURES
Groups
Abelian groups
Definition and basic properties
ablcntzd
Next ⟩
lsmcom
Metamath Proof Explorer
Ascii
Unicode
Theorem
ablcntzd
Description:
All subgroups in an abelian group commute.
(Contributed by
Mario Carneiro
, 19-Apr-2016)
Ref
Expression
Hypotheses
ablcntzd.z
⊢
Z
=
Cntz
⁡
G
ablcntzd.a
⊢
φ
→
G
∈
Abel
ablcntzd.t
⊢
φ
→
T
∈
SubGrp
⁡
G
ablcntzd.u
⊢
φ
→
U
∈
SubGrp
⁡
G
Assertion
ablcntzd
⊢
φ
→
T
⊆
Z
⁡
U
Proof
Step
Hyp
Ref
Expression
1
ablcntzd.z
⊢
Z
=
Cntz
⁡
G
2
ablcntzd.a
⊢
φ
→
G
∈
Abel
3
ablcntzd.t
⊢
φ
→
T
∈
SubGrp
⁡
G
4
ablcntzd.u
⊢
φ
→
U
∈
SubGrp
⁡
G
5
eqid
⊢
Base
G
=
Base
G
6
5
subgss
⊢
T
∈
SubGrp
⁡
G
→
T
⊆
Base
G
7
3
6
syl
⊢
φ
→
T
⊆
Base
G
8
ablcmn
⊢
G
∈
Abel
→
G
∈
CMnd
9
2
8
syl
⊢
φ
→
G
∈
CMnd
10
5
subgss
⊢
U
∈
SubGrp
⁡
G
→
U
⊆
Base
G
11
4
10
syl
⊢
φ
→
U
⊆
Base
G
12
5
1
cntzcmn
⊢
G
∈
CMnd
∧
U
⊆
Base
G
→
Z
⁡
U
=
Base
G
13
9
11
12
syl2anc
⊢
φ
→
Z
⁡
U
=
Base
G
14
7
13
sseqtrrd
⊢
φ
→
T
⊆
Z
⁡
U