Metamath Proof Explorer


Theorem ablcntzd

Description: All subgroups in an abelian group commute. (Contributed by Mario Carneiro, 19-Apr-2016)

Ref Expression
Hypotheses ablcntzd.z Z=CntzG
ablcntzd.a φGAbel
ablcntzd.t φTSubGrpG
ablcntzd.u φUSubGrpG
Assertion ablcntzd φTZU

Proof

Step Hyp Ref Expression
1 ablcntzd.z Z=CntzG
2 ablcntzd.a φGAbel
3 ablcntzd.t φTSubGrpG
4 ablcntzd.u φUSubGrpG
5 eqid BaseG=BaseG
6 5 subgss TSubGrpGTBaseG
7 3 6 syl φTBaseG
8 ablcmn GAbelGCMnd
9 2 8 syl φGCMnd
10 5 subgss USubGrpGUBaseG
11 4 10 syl φUBaseG
12 5 1 cntzcmn GCMndUBaseGZU=BaseG
13 9 11 12 syl2anc φZU=BaseG
14 7 13 sseqtrrd φTZU