Metamath Proof Explorer


Theorem ablcntzd

Description: All subgroups in an abelian group commute. (Contributed by Mario Carneiro, 19-Apr-2016)

Ref Expression
Hypotheses ablcntzd.z Z = Cntz G
ablcntzd.a φ G Abel
ablcntzd.t φ T SubGrp G
ablcntzd.u φ U SubGrp G
Assertion ablcntzd φ T Z U

Proof

Step Hyp Ref Expression
1 ablcntzd.z Z = Cntz G
2 ablcntzd.a φ G Abel
3 ablcntzd.t φ T SubGrp G
4 ablcntzd.u φ U SubGrp G
5 eqid Base G = Base G
6 5 subgss T SubGrp G T Base G
7 3 6 syl φ T Base G
8 ablcmn G Abel G CMnd
9 2 8 syl φ G CMnd
10 5 subgss U SubGrp G U Base G
11 4 10 syl φ U Base G
12 5 1 cntzcmn G CMnd U Base G Z U = Base G
13 9 11 12 syl2anc φ Z U = Base G
14 7 13 sseqtrrd φ T Z U