Metamath Proof Explorer


Theorem lsmcom

Description: Subgroup sum commutes. (Contributed by NM, 6-Feb-2014) (Revised by Mario Carneiro, 21-Jun-2014)

Ref Expression
Hypothesis lsmcom.s ˙ = LSSum G
Assertion lsmcom G Abel T SubGrp G U SubGrp G T ˙ U = U ˙ T

Proof

Step Hyp Ref Expression
1 lsmcom.s ˙ = LSSum G
2 id G Abel G Abel
3 eqid Base G = Base G
4 3 subgss T SubGrp G T Base G
5 3 subgss U SubGrp G U Base G
6 3 1 lsmcomx G Abel T Base G U Base G T ˙ U = U ˙ T
7 2 4 5 6 syl3an G Abel T SubGrp G U SubGrp G T ˙ U = U ˙ T