Metamath Proof Explorer


Theorem lsmcom

Description: Subgroup sum commutes. (Contributed by NM, 6-Feb-2014) (Revised by Mario Carneiro, 21-Jun-2014)

Ref Expression
Hypothesis lsmcom.s
|- .(+) = ( LSSum ` G )
Assertion lsmcom
|- ( ( G e. Abel /\ T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) -> ( T .(+) U ) = ( U .(+) T ) )

Proof

Step Hyp Ref Expression
1 lsmcom.s
 |-  .(+) = ( LSSum ` G )
2 id
 |-  ( G e. Abel -> G e. Abel )
3 eqid
 |-  ( Base ` G ) = ( Base ` G )
4 3 subgss
 |-  ( T e. ( SubGrp ` G ) -> T C_ ( Base ` G ) )
5 3 subgss
 |-  ( U e. ( SubGrp ` G ) -> U C_ ( Base ` G ) )
6 3 1 lsmcomx
 |-  ( ( G e. Abel /\ T C_ ( Base ` G ) /\ U C_ ( Base ` G ) ) -> ( T .(+) U ) = ( U .(+) T ) )
7 2 4 5 6 syl3an
 |-  ( ( G e. Abel /\ T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) -> ( T .(+) U ) = ( U .(+) T ) )