Description: Subgroup sum commutes. (Contributed by NM, 6-Feb-2014) (Revised by Mario Carneiro, 21-Jun-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | lsmcom.s | |- .(+) = ( LSSum ` G ) |
|
| Assertion | lsmcom | |- ( ( G e. Abel /\ T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) -> ( T .(+) U ) = ( U .(+) T ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsmcom.s | |- .(+) = ( LSSum ` G ) |
|
| 2 | id | |- ( G e. Abel -> G e. Abel ) |
|
| 3 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
| 4 | 3 | subgss | |- ( T e. ( SubGrp ` G ) -> T C_ ( Base ` G ) ) |
| 5 | 3 | subgss | |- ( U e. ( SubGrp ` G ) -> U C_ ( Base ` G ) ) |
| 6 | 3 1 | lsmcomx | |- ( ( G e. Abel /\ T C_ ( Base ` G ) /\ U C_ ( Base ` G ) ) -> ( T .(+) U ) = ( U .(+) T ) ) |
| 7 | 2 4 5 6 | syl3an | |- ( ( G e. Abel /\ T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) -> ( T .(+) U ) = ( U .(+) T ) ) |