Description: Subgroup sum commutes. (Contributed by NM, 6-Feb-2014) (Revised by Mario Carneiro, 21-Jun-2014)
Ref | Expression | ||
---|---|---|---|
Hypothesis | lsmcom.s | |- .(+) = ( LSSum ` G ) |
|
Assertion | lsmcom | |- ( ( G e. Abel /\ T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) -> ( T .(+) U ) = ( U .(+) T ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lsmcom.s | |- .(+) = ( LSSum ` G ) |
|
2 | id | |- ( G e. Abel -> G e. Abel ) |
|
3 | eqid | |- ( Base ` G ) = ( Base ` G ) |
|
4 | 3 | subgss | |- ( T e. ( SubGrp ` G ) -> T C_ ( Base ` G ) ) |
5 | 3 | subgss | |- ( U e. ( SubGrp ` G ) -> U C_ ( Base ` G ) ) |
6 | 3 1 | lsmcomx | |- ( ( G e. Abel /\ T C_ ( Base ` G ) /\ U C_ ( Base ` G ) ) -> ( T .(+) U ) = ( U .(+) T ) ) |
7 | 2 4 5 6 | syl3an | |- ( ( G e. Abel /\ T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) -> ( T .(+) U ) = ( U .(+) T ) ) |