Metamath Proof Explorer


Theorem lsmcom

Description: Subgroup sum commutes. (Contributed by NM, 6-Feb-2014) (Revised by Mario Carneiro, 21-Jun-2014)

Ref Expression
Hypothesis lsmcom.s = ( LSSum ‘ 𝐺 )
Assertion lsmcom ( ( 𝐺 ∈ Abel ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) → ( 𝑇 𝑈 ) = ( 𝑈 𝑇 ) )

Proof

Step Hyp Ref Expression
1 lsmcom.s = ( LSSum ‘ 𝐺 )
2 id ( 𝐺 ∈ Abel → 𝐺 ∈ Abel )
3 eqid ( Base ‘ 𝐺 ) = ( Base ‘ 𝐺 )
4 3 subgss ( 𝑇 ∈ ( SubGrp ‘ 𝐺 ) → 𝑇 ⊆ ( Base ‘ 𝐺 ) )
5 3 subgss ( 𝑈 ∈ ( SubGrp ‘ 𝐺 ) → 𝑈 ⊆ ( Base ‘ 𝐺 ) )
6 3 1 lsmcomx ( ( 𝐺 ∈ Abel ∧ 𝑇 ⊆ ( Base ‘ 𝐺 ) ∧ 𝑈 ⊆ ( Base ‘ 𝐺 ) ) → ( 𝑇 𝑈 ) = ( 𝑈 𝑇 ) )
7 2 4 5 6 syl3an ( ( 𝐺 ∈ Abel ∧ 𝑇 ∈ ( SubGrp ‘ 𝐺 ) ∧ 𝑈 ∈ ( SubGrp ‘ 𝐺 ) ) → ( 𝑇 𝑈 ) = ( 𝑈 𝑇 ) )