Metamath Proof Explorer


Theorem lsmcomx

Description: Subgroup sum commutes (extended domain version). (Contributed by NM, 25-Feb-2014) (Revised by Mario Carneiro, 19-Apr-2016)

Ref Expression
Hypotheses lsmcomx.v B=BaseG
lsmcomx.s ˙=LSSumG
Assertion lsmcomx GAbelTBUBT˙U=U˙T

Proof

Step Hyp Ref Expression
1 lsmcomx.v B=BaseG
2 lsmcomx.s ˙=LSSumG
3 simpl1 GAbelTBUByTzUGAbel
4 simpl2 GAbelTBUByTzUTB
5 simprl GAbelTBUByTzUyT
6 4 5 sseldd GAbelTBUByTzUyB
7 simpl3 GAbelTBUByTzUUB
8 simprr GAbelTBUByTzUzU
9 7 8 sseldd GAbelTBUByTzUzB
10 eqid +G=+G
11 1 10 ablcom GAbelyBzBy+Gz=z+Gy
12 3 6 9 11 syl3anc GAbelTBUByTzUy+Gz=z+Gy
13 12 eqeq2d GAbelTBUByTzUx=y+Gzx=z+Gy
14 13 2rexbidva GAbelTBUByTzUx=y+GzyTzUx=z+Gy
15 rexcom yTzUx=z+GyzUyTx=z+Gy
16 14 15 bitrdi GAbelTBUByTzUx=y+GzzUyTx=z+Gy
17 1 10 2 lsmelvalx GAbelTBUBxT˙UyTzUx=y+Gz
18 1 10 2 lsmelvalx GAbelUBTBxU˙TzUyTx=z+Gy
19 18 3com23 GAbelTBUBxU˙TzUyTx=z+Gy
20 16 17 19 3bitr4d GAbelTBUBxT˙UxU˙T
21 20 eqrdv GAbelTBUBT˙U=U˙T