Metamath Proof Explorer


Theorem lsmsubg

Description: The sum of two commuting subgroups is a subgroup. (Contributed by Mario Carneiro, 19-Apr-2016)

Ref Expression
Hypotheses lsmsubg.p ˙ = LSSum G
lsmsubg.z Z = Cntz G
Assertion lsmsubg T SubGrp G U SubGrp G T Z U T ˙ U SubGrp G

Proof

Step Hyp Ref Expression
1 lsmsubg.p ˙ = LSSum G
2 lsmsubg.z Z = Cntz G
3 simp1 T SubGrp G U SubGrp G T Z U T SubGrp G
4 subgsubm T SubGrp G T SubMnd G
5 3 4 syl T SubGrp G U SubGrp G T Z U T SubMnd G
6 simp2 T SubGrp G U SubGrp G T Z U U SubGrp G
7 subgsubm U SubGrp G U SubMnd G
8 6 7 syl T SubGrp G U SubGrp G T Z U U SubMnd G
9 simp3 T SubGrp G U SubGrp G T Z U T Z U
10 1 2 lsmsubm T SubMnd G U SubMnd G T Z U T ˙ U SubMnd G
11 5 8 9 10 syl3anc T SubGrp G U SubGrp G T Z U T ˙ U SubMnd G
12 eqid + G = + G
13 12 1 lsmelval T SubGrp G U SubGrp G x T ˙ U a T b U x = a + G b
14 13 3adant3 T SubGrp G U SubGrp G T Z U x T ˙ U a T b U x = a + G b
15 3 adantr T SubGrp G U SubGrp G T Z U a T b U T SubGrp G
16 subgrcl T SubGrp G G Grp
17 15 16 syl T SubGrp G U SubGrp G T Z U a T b U G Grp
18 eqid Base G = Base G
19 18 subgss T SubGrp G T Base G
20 15 19 syl T SubGrp G U SubGrp G T Z U a T b U T Base G
21 simprl T SubGrp G U SubGrp G T Z U a T b U a T
22 20 21 sseldd T SubGrp G U SubGrp G T Z U a T b U a Base G
23 6 adantr T SubGrp G U SubGrp G T Z U a T b U U SubGrp G
24 18 subgss U SubGrp G U Base G
25 23 24 syl T SubGrp G U SubGrp G T Z U a T b U U Base G
26 simprr T SubGrp G U SubGrp G T Z U a T b U b U
27 25 26 sseldd T SubGrp G U SubGrp G T Z U a T b U b Base G
28 eqid inv g G = inv g G
29 18 12 28 grpinvadd G Grp a Base G b Base G inv g G a + G b = inv g G b + G inv g G a
30 17 22 27 29 syl3anc T SubGrp G U SubGrp G T Z U a T b U inv g G a + G b = inv g G b + G inv g G a
31 9 adantr T SubGrp G U SubGrp G T Z U a T b U T Z U
32 28 subginvcl T SubGrp G a T inv g G a T
33 15 21 32 syl2anc T SubGrp G U SubGrp G T Z U a T b U inv g G a T
34 31 33 sseldd T SubGrp G U SubGrp G T Z U a T b U inv g G a Z U
35 28 subginvcl U SubGrp G b U inv g G b U
36 23 26 35 syl2anc T SubGrp G U SubGrp G T Z U a T b U inv g G b U
37 12 2 cntzi inv g G a Z U inv g G b U inv g G a + G inv g G b = inv g G b + G inv g G a
38 34 36 37 syl2anc T SubGrp G U SubGrp G T Z U a T b U inv g G a + G inv g G b = inv g G b + G inv g G a
39 30 38 eqtr4d T SubGrp G U SubGrp G T Z U a T b U inv g G a + G b = inv g G a + G inv g G b
40 12 1 lsmelvali T SubGrp G U SubGrp G inv g G a T inv g G b U inv g G a + G inv g G b T ˙ U
41 15 23 33 36 40 syl22anc T SubGrp G U SubGrp G T Z U a T b U inv g G a + G inv g G b T ˙ U
42 39 41 eqeltrd T SubGrp G U SubGrp G T Z U a T b U inv g G a + G b T ˙ U
43 fveq2 x = a + G b inv g G x = inv g G a + G b
44 43 eleq1d x = a + G b inv g G x T ˙ U inv g G a + G b T ˙ U
45 42 44 syl5ibrcom T SubGrp G U SubGrp G T Z U a T b U x = a + G b inv g G x T ˙ U
46 45 rexlimdvva T SubGrp G U SubGrp G T Z U a T b U x = a + G b inv g G x T ˙ U
47 14 46 sylbid T SubGrp G U SubGrp G T Z U x T ˙ U inv g G x T ˙ U
48 47 ralrimiv T SubGrp G U SubGrp G T Z U x T ˙ U inv g G x T ˙ U
49 3 16 syl T SubGrp G U SubGrp G T Z U G Grp
50 28 issubg3 G Grp T ˙ U SubGrp G T ˙ U SubMnd G x T ˙ U inv g G x T ˙ U
51 49 50 syl T SubGrp G U SubGrp G T Z U T ˙ U SubGrp G T ˙ U SubMnd G x T ˙ U inv g G x T ˙ U
52 11 48 51 mpbir2and T SubGrp G U SubGrp G T Z U T ˙ U SubGrp G