| Step |
Hyp |
Ref |
Expression |
| 1 |
|
lsmsubg.p |
|- .(+) = ( LSSum ` G ) |
| 2 |
|
lsmsubg.z |
|- Z = ( Cntz ` G ) |
| 3 |
|
simp1 |
|- ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) /\ T C_ ( Z ` U ) ) -> T e. ( SubGrp ` G ) ) |
| 4 |
|
subgsubm |
|- ( T e. ( SubGrp ` G ) -> T e. ( SubMnd ` G ) ) |
| 5 |
3 4
|
syl |
|- ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) /\ T C_ ( Z ` U ) ) -> T e. ( SubMnd ` G ) ) |
| 6 |
|
simp2 |
|- ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) /\ T C_ ( Z ` U ) ) -> U e. ( SubGrp ` G ) ) |
| 7 |
|
subgsubm |
|- ( U e. ( SubGrp ` G ) -> U e. ( SubMnd ` G ) ) |
| 8 |
6 7
|
syl |
|- ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) /\ T C_ ( Z ` U ) ) -> U e. ( SubMnd ` G ) ) |
| 9 |
|
simp3 |
|- ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) /\ T C_ ( Z ` U ) ) -> T C_ ( Z ` U ) ) |
| 10 |
1 2
|
lsmsubm |
|- ( ( T e. ( SubMnd ` G ) /\ U e. ( SubMnd ` G ) /\ T C_ ( Z ` U ) ) -> ( T .(+) U ) e. ( SubMnd ` G ) ) |
| 11 |
5 8 9 10
|
syl3anc |
|- ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) /\ T C_ ( Z ` U ) ) -> ( T .(+) U ) e. ( SubMnd ` G ) ) |
| 12 |
|
eqid |
|- ( +g ` G ) = ( +g ` G ) |
| 13 |
12 1
|
lsmelval |
|- ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) -> ( x e. ( T .(+) U ) <-> E. a e. T E. b e. U x = ( a ( +g ` G ) b ) ) ) |
| 14 |
13
|
3adant3 |
|- ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) /\ T C_ ( Z ` U ) ) -> ( x e. ( T .(+) U ) <-> E. a e. T E. b e. U x = ( a ( +g ` G ) b ) ) ) |
| 15 |
3
|
adantr |
|- ( ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) /\ T C_ ( Z ` U ) ) /\ ( a e. T /\ b e. U ) ) -> T e. ( SubGrp ` G ) ) |
| 16 |
|
subgrcl |
|- ( T e. ( SubGrp ` G ) -> G e. Grp ) |
| 17 |
15 16
|
syl |
|- ( ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) /\ T C_ ( Z ` U ) ) /\ ( a e. T /\ b e. U ) ) -> G e. Grp ) |
| 18 |
|
eqid |
|- ( Base ` G ) = ( Base ` G ) |
| 19 |
18
|
subgss |
|- ( T e. ( SubGrp ` G ) -> T C_ ( Base ` G ) ) |
| 20 |
15 19
|
syl |
|- ( ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) /\ T C_ ( Z ` U ) ) /\ ( a e. T /\ b e. U ) ) -> T C_ ( Base ` G ) ) |
| 21 |
|
simprl |
|- ( ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) /\ T C_ ( Z ` U ) ) /\ ( a e. T /\ b e. U ) ) -> a e. T ) |
| 22 |
20 21
|
sseldd |
|- ( ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) /\ T C_ ( Z ` U ) ) /\ ( a e. T /\ b e. U ) ) -> a e. ( Base ` G ) ) |
| 23 |
6
|
adantr |
|- ( ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) /\ T C_ ( Z ` U ) ) /\ ( a e. T /\ b e. U ) ) -> U e. ( SubGrp ` G ) ) |
| 24 |
18
|
subgss |
|- ( U e. ( SubGrp ` G ) -> U C_ ( Base ` G ) ) |
| 25 |
23 24
|
syl |
|- ( ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) /\ T C_ ( Z ` U ) ) /\ ( a e. T /\ b e. U ) ) -> U C_ ( Base ` G ) ) |
| 26 |
|
simprr |
|- ( ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) /\ T C_ ( Z ` U ) ) /\ ( a e. T /\ b e. U ) ) -> b e. U ) |
| 27 |
25 26
|
sseldd |
|- ( ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) /\ T C_ ( Z ` U ) ) /\ ( a e. T /\ b e. U ) ) -> b e. ( Base ` G ) ) |
| 28 |
|
eqid |
|- ( invg ` G ) = ( invg ` G ) |
| 29 |
18 12 28
|
grpinvadd |
|- ( ( G e. Grp /\ a e. ( Base ` G ) /\ b e. ( Base ` G ) ) -> ( ( invg ` G ) ` ( a ( +g ` G ) b ) ) = ( ( ( invg ` G ) ` b ) ( +g ` G ) ( ( invg ` G ) ` a ) ) ) |
| 30 |
17 22 27 29
|
syl3anc |
|- ( ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) /\ T C_ ( Z ` U ) ) /\ ( a e. T /\ b e. U ) ) -> ( ( invg ` G ) ` ( a ( +g ` G ) b ) ) = ( ( ( invg ` G ) ` b ) ( +g ` G ) ( ( invg ` G ) ` a ) ) ) |
| 31 |
9
|
adantr |
|- ( ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) /\ T C_ ( Z ` U ) ) /\ ( a e. T /\ b e. U ) ) -> T C_ ( Z ` U ) ) |
| 32 |
28
|
subginvcl |
|- ( ( T e. ( SubGrp ` G ) /\ a e. T ) -> ( ( invg ` G ) ` a ) e. T ) |
| 33 |
15 21 32
|
syl2anc |
|- ( ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) /\ T C_ ( Z ` U ) ) /\ ( a e. T /\ b e. U ) ) -> ( ( invg ` G ) ` a ) e. T ) |
| 34 |
31 33
|
sseldd |
|- ( ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) /\ T C_ ( Z ` U ) ) /\ ( a e. T /\ b e. U ) ) -> ( ( invg ` G ) ` a ) e. ( Z ` U ) ) |
| 35 |
28
|
subginvcl |
|- ( ( U e. ( SubGrp ` G ) /\ b e. U ) -> ( ( invg ` G ) ` b ) e. U ) |
| 36 |
23 26 35
|
syl2anc |
|- ( ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) /\ T C_ ( Z ` U ) ) /\ ( a e. T /\ b e. U ) ) -> ( ( invg ` G ) ` b ) e. U ) |
| 37 |
12 2
|
cntzi |
|- ( ( ( ( invg ` G ) ` a ) e. ( Z ` U ) /\ ( ( invg ` G ) ` b ) e. U ) -> ( ( ( invg ` G ) ` a ) ( +g ` G ) ( ( invg ` G ) ` b ) ) = ( ( ( invg ` G ) ` b ) ( +g ` G ) ( ( invg ` G ) ` a ) ) ) |
| 38 |
34 36 37
|
syl2anc |
|- ( ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) /\ T C_ ( Z ` U ) ) /\ ( a e. T /\ b e. U ) ) -> ( ( ( invg ` G ) ` a ) ( +g ` G ) ( ( invg ` G ) ` b ) ) = ( ( ( invg ` G ) ` b ) ( +g ` G ) ( ( invg ` G ) ` a ) ) ) |
| 39 |
30 38
|
eqtr4d |
|- ( ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) /\ T C_ ( Z ` U ) ) /\ ( a e. T /\ b e. U ) ) -> ( ( invg ` G ) ` ( a ( +g ` G ) b ) ) = ( ( ( invg ` G ) ` a ) ( +g ` G ) ( ( invg ` G ) ` b ) ) ) |
| 40 |
12 1
|
lsmelvali |
|- ( ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) ) /\ ( ( ( invg ` G ) ` a ) e. T /\ ( ( invg ` G ) ` b ) e. U ) ) -> ( ( ( invg ` G ) ` a ) ( +g ` G ) ( ( invg ` G ) ` b ) ) e. ( T .(+) U ) ) |
| 41 |
15 23 33 36 40
|
syl22anc |
|- ( ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) /\ T C_ ( Z ` U ) ) /\ ( a e. T /\ b e. U ) ) -> ( ( ( invg ` G ) ` a ) ( +g ` G ) ( ( invg ` G ) ` b ) ) e. ( T .(+) U ) ) |
| 42 |
39 41
|
eqeltrd |
|- ( ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) /\ T C_ ( Z ` U ) ) /\ ( a e. T /\ b e. U ) ) -> ( ( invg ` G ) ` ( a ( +g ` G ) b ) ) e. ( T .(+) U ) ) |
| 43 |
|
fveq2 |
|- ( x = ( a ( +g ` G ) b ) -> ( ( invg ` G ) ` x ) = ( ( invg ` G ) ` ( a ( +g ` G ) b ) ) ) |
| 44 |
43
|
eleq1d |
|- ( x = ( a ( +g ` G ) b ) -> ( ( ( invg ` G ) ` x ) e. ( T .(+) U ) <-> ( ( invg ` G ) ` ( a ( +g ` G ) b ) ) e. ( T .(+) U ) ) ) |
| 45 |
42 44
|
syl5ibrcom |
|- ( ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) /\ T C_ ( Z ` U ) ) /\ ( a e. T /\ b e. U ) ) -> ( x = ( a ( +g ` G ) b ) -> ( ( invg ` G ) ` x ) e. ( T .(+) U ) ) ) |
| 46 |
45
|
rexlimdvva |
|- ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) /\ T C_ ( Z ` U ) ) -> ( E. a e. T E. b e. U x = ( a ( +g ` G ) b ) -> ( ( invg ` G ) ` x ) e. ( T .(+) U ) ) ) |
| 47 |
14 46
|
sylbid |
|- ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) /\ T C_ ( Z ` U ) ) -> ( x e. ( T .(+) U ) -> ( ( invg ` G ) ` x ) e. ( T .(+) U ) ) ) |
| 48 |
47
|
ralrimiv |
|- ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) /\ T C_ ( Z ` U ) ) -> A. x e. ( T .(+) U ) ( ( invg ` G ) ` x ) e. ( T .(+) U ) ) |
| 49 |
3 16
|
syl |
|- ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) /\ T C_ ( Z ` U ) ) -> G e. Grp ) |
| 50 |
28
|
issubg3 |
|- ( G e. Grp -> ( ( T .(+) U ) e. ( SubGrp ` G ) <-> ( ( T .(+) U ) e. ( SubMnd ` G ) /\ A. x e. ( T .(+) U ) ( ( invg ` G ) ` x ) e. ( T .(+) U ) ) ) ) |
| 51 |
49 50
|
syl |
|- ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) /\ T C_ ( Z ` U ) ) -> ( ( T .(+) U ) e. ( SubGrp ` G ) <-> ( ( T .(+) U ) e. ( SubMnd ` G ) /\ A. x e. ( T .(+) U ) ( ( invg ` G ) ` x ) e. ( T .(+) U ) ) ) ) |
| 52 |
11 48 51
|
mpbir2and |
|- ( ( T e. ( SubGrp ` G ) /\ U e. ( SubGrp ` G ) /\ T C_ ( Z ` U ) ) -> ( T .(+) U ) e. ( SubGrp ` G ) ) |