Metamath Proof Explorer


Theorem lsmcom2

Description: Subgroup sum commutes. (Contributed by Mario Carneiro, 22-Apr-2016)

Ref Expression
Hypotheses lsmsubg.p ˙=LSSumG
lsmsubg.z Z=CntzG
Assertion lsmcom2 TSubGrpGUSubGrpGTZUT˙U=U˙T

Proof

Step Hyp Ref Expression
1 lsmsubg.p ˙=LSSumG
2 lsmsubg.z Z=CntzG
3 simp3 TSubGrpGUSubGrpGTZUTZU
4 3 sselda TSubGrpGUSubGrpGTZUaTaZU
5 4 adantrr TSubGrpGUSubGrpGTZUaTbUaZU
6 simprr TSubGrpGUSubGrpGTZUaTbUbU
7 eqid +G=+G
8 7 2 cntzi aZUbUa+Gb=b+Ga
9 5 6 8 syl2anc TSubGrpGUSubGrpGTZUaTbUa+Gb=b+Ga
10 9 eqeq2d TSubGrpGUSubGrpGTZUaTbUx=a+Gbx=b+Ga
11 10 2rexbidva TSubGrpGUSubGrpGTZUaTbUx=a+GbaTbUx=b+Ga
12 rexcom aTbUx=b+GabUaTx=b+Ga
13 11 12 bitrdi TSubGrpGUSubGrpGTZUaTbUx=a+GbbUaTx=b+Ga
14 7 1 lsmelval TSubGrpGUSubGrpGxT˙UaTbUx=a+Gb
15 14 3adant3 TSubGrpGUSubGrpGTZUxT˙UaTbUx=a+Gb
16 7 1 lsmelval USubGrpGTSubGrpGxU˙TbUaTx=b+Ga
17 16 ancoms TSubGrpGUSubGrpGxU˙TbUaTx=b+Ga
18 17 3adant3 TSubGrpGUSubGrpGTZUxU˙TbUaTx=b+Ga
19 13 15 18 3bitr4d TSubGrpGUSubGrpGTZUxT˙UxU˙T
20 19 eqrdv TSubGrpGUSubGrpGTZUT˙U=U˙T