Description: Subgroup sum commutes. (Contributed by Mario Carneiro, 22-Apr-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lsmsubg.p | |
|
lsmsubg.z | |
||
Assertion | lsmcom2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lsmsubg.p | |
|
2 | lsmsubg.z | |
|
3 | simp3 | |
|
4 | 3 | sselda | |
5 | 4 | adantrr | |
6 | simprr | |
|
7 | eqid | |
|
8 | 7 2 | cntzi | |
9 | 5 6 8 | syl2anc | |
10 | 9 | eqeq2d | |
11 | 10 | 2rexbidva | |
12 | rexcom | |
|
13 | 11 12 | bitrdi | |
14 | 7 1 | lsmelval | |
15 | 14 | 3adant3 | |
16 | 7 1 | lsmelval | |
17 | 16 | ancoms | |
18 | 17 | 3adant3 | |
19 | 13 15 18 | 3bitr4d | |
20 | 19 | eqrdv | |