Description: A linear subspace is a subgroup which respects scalar multiplication. (Contributed by Stefan O'Rear, 11-Dec-2014) (Revised by Mario Carneiro, 19-Apr-2016)
Ref | Expression | ||
---|---|---|---|
Hypotheses | islss4.f | |
|
islss4.b | |
||
islss4.v | |
||
islss4.t | |
||
islss4.s | |
||
Assertion | islss4 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | islss4.f | |
|
2 | islss4.b | |
|
3 | islss4.v | |
|
4 | islss4.t | |
|
5 | islss4.s | |
|
6 | 5 | lsssubg | |
7 | 1 4 2 5 | lssvscl | |
8 | 7 | ralrimivva | |
9 | 6 8 | jca | |
10 | 3 | subgss | |
11 | 10 | ad2antrl | |
12 | eqid | |
|
13 | 12 | subg0cl | |
14 | 13 | ne0d | |
15 | 14 | ad2antrl | |
16 | eqid | |
|
17 | 16 | subgcl | |
18 | 17 | 3exp | |
19 | 18 | adantl | |
20 | 19 | ralrimdv | |
21 | 20 | ralimdv | |
22 | 21 | ralimdv | |
23 | 22 | impr | |
24 | 1 2 3 16 4 5 | islss | |
25 | 11 15 23 24 | syl3anbrc | |
26 | 9 25 | impbida | |