Metamath Proof Explorer


Theorem islss4

Description: A linear subspace is a subgroup which respects scalar multiplication. (Contributed by Stefan O'Rear, 11-Dec-2014) (Revised by Mario Carneiro, 19-Apr-2016)

Ref Expression
Hypotheses islss4.f F=ScalarW
islss4.b B=BaseF
islss4.v V=BaseW
islss4.t ·˙=W
islss4.s S=LSubSpW
Assertion islss4 WLModUSUSubGrpWaBbUa·˙bU

Proof

Step Hyp Ref Expression
1 islss4.f F=ScalarW
2 islss4.b B=BaseF
3 islss4.v V=BaseW
4 islss4.t ·˙=W
5 islss4.s S=LSubSpW
6 5 lsssubg WLModUSUSubGrpW
7 1 4 2 5 lssvscl WLModUSaBbUa·˙bU
8 7 ralrimivva WLModUSaBbUa·˙bU
9 6 8 jca WLModUSUSubGrpWaBbUa·˙bU
10 3 subgss USubGrpWUV
11 10 ad2antrl WLModUSubGrpWaBbUa·˙bUUV
12 eqid 0W=0W
13 12 subg0cl USubGrpW0WU
14 13 ne0d USubGrpWU
15 14 ad2antrl WLModUSubGrpWaBbUa·˙bUU
16 eqid +W=+W
17 16 subgcl USubGrpWa·˙bUcUa·˙b+WcU
18 17 3exp USubGrpWa·˙bUcUa·˙b+WcU
19 18 adantl WLModUSubGrpWa·˙bUcUa·˙b+WcU
20 19 ralrimdv WLModUSubGrpWa·˙bUcUa·˙b+WcU
21 20 ralimdv WLModUSubGrpWbUa·˙bUbUcUa·˙b+WcU
22 21 ralimdv WLModUSubGrpWaBbUa·˙bUaBbUcUa·˙b+WcU
23 22 impr WLModUSubGrpWaBbUa·˙bUaBbUcUa·˙b+WcU
24 1 2 3 16 4 5 islss USUVUaBbUcUa·˙b+WcU
25 11 15 23 24 syl3anbrc WLModUSubGrpWaBbUa·˙bUUS
26 9 25 impbida WLModUSUSubGrpWaBbUa·˙bU