Metamath Proof Explorer


Theorem lsmspsn

Description: Member of subspace sum of spans of singletons. (Contributed by NM, 8-Apr-2015)

Ref Expression
Hypotheses lsmspsn.v V=BaseW
lsmspsn.a +˙=+W
lsmspsn.f F=ScalarW
lsmspsn.k K=BaseF
lsmspsn.t ·˙=W
lsmspsn.p ˙=LSSumW
lsmspsn.n N=LSpanW
lsmspsn.w φWLMod
lsmspsn.x φXV
lsmspsn.y φYV
Assertion lsmspsn φUNX˙NYjKkKU=j·˙X+˙k·˙Y

Proof

Step Hyp Ref Expression
1 lsmspsn.v V=BaseW
2 lsmspsn.a +˙=+W
3 lsmspsn.f F=ScalarW
4 lsmspsn.k K=BaseF
5 lsmspsn.t ·˙=W
6 lsmspsn.p ˙=LSSumW
7 lsmspsn.n N=LSpanW
8 lsmspsn.w φWLMod
9 lsmspsn.x φXV
10 lsmspsn.y φYV
11 1 7 lspsnsubg WLModXVNXSubGrpW
12 8 9 11 syl2anc φNXSubGrpW
13 1 7 lspsnsubg WLModYVNYSubGrpW
14 8 10 13 syl2anc φNYSubGrpW
15 2 6 lsmelval NXSubGrpWNYSubGrpWUNX˙NYvNXwNYU=v+˙w
16 12 14 15 syl2anc φUNX˙NYvNXwNYU=v+˙w
17 3 4 1 5 7 lspsnel WLModXVvNXjKv=j·˙X
18 8 9 17 syl2anc φvNXjKv=j·˙X
19 3 4 1 5 7 lspsnel WLModYVwNYkKw=k·˙Y
20 8 10 19 syl2anc φwNYkKw=k·˙Y
21 18 20 anbi12d φvNXwNYjKv=j·˙XkKw=k·˙Y
22 21 biimpa φvNXwNYjKv=j·˙XkKw=k·˙Y
23 22 biantrurd φvNXwNYU=v+˙wjKv=j·˙XkKw=k·˙YU=v+˙w
24 r19.41v kKv=j·˙Xw=k·˙YU=v+˙wkKv=j·˙Xw=k·˙YU=v+˙w
25 24 rexbii jKkKv=j·˙Xw=k·˙YU=v+˙wjKkKv=j·˙Xw=k·˙YU=v+˙w
26 r19.41v jKkKv=j·˙Xw=k·˙YU=v+˙wjKkKv=j·˙Xw=k·˙YU=v+˙w
27 reeanv jKkKv=j·˙Xw=k·˙YjKv=j·˙XkKw=k·˙Y
28 27 anbi1i jKkKv=j·˙Xw=k·˙YU=v+˙wjKv=j·˙XkKw=k·˙YU=v+˙w
29 25 26 28 3bitrri jKv=j·˙XkKw=k·˙YU=v+˙wjKkKv=j·˙Xw=k·˙YU=v+˙w
30 23 29 bitrdi φvNXwNYU=v+˙wjKkKv=j·˙Xw=k·˙YU=v+˙w
31 30 2rexbidva φvNXwNYU=v+˙wvNXwNYjKkKv=j·˙Xw=k·˙YU=v+˙w
32 rexrot4 vNXwNYjKkKv=j·˙Xw=k·˙YU=v+˙wjKkKvNXwNYv=j·˙Xw=k·˙YU=v+˙w
33 31 32 bitrdi φvNXwNYU=v+˙wjKkKvNXwNYv=j·˙Xw=k·˙YU=v+˙w
34 8 adantr φjKkKWLMod
35 simprl φjKkKjK
36 9 adantr φjKkKXV
37 1 5 3 4 7 34 35 36 lspsneli φjKkKj·˙XNX
38 simprr φjKkKkK
39 10 adantr φjKkKYV
40 1 5 3 4 7 34 38 39 lspsneli φjKkKk·˙YNY
41 oveq1 v=j·˙Xv+˙w=j·˙X+˙w
42 41 eqeq2d v=j·˙XU=v+˙wU=j·˙X+˙w
43 oveq2 w=k·˙Yj·˙X+˙w=j·˙X+˙k·˙Y
44 43 eqeq2d w=k·˙YU=j·˙X+˙wU=j·˙X+˙k·˙Y
45 42 44 ceqsrex2v j·˙XNXk·˙YNYvNXwNYv=j·˙Xw=k·˙YU=v+˙wU=j·˙X+˙k·˙Y
46 37 40 45 syl2anc φjKkKvNXwNYv=j·˙Xw=k·˙YU=v+˙wU=j·˙X+˙k·˙Y
47 46 2rexbidva φjKkKvNXwNYv=j·˙Xw=k·˙YU=v+˙wjKkKU=j·˙X+˙k·˙Y
48 16 33 47 3bitrd φUNX˙NYjKkKU=j·˙X+˙k·˙Y