Description: Member of subspace sum of spans of singletons. (Contributed by NM, 8-Apr-2015)
Ref | Expression | ||
---|---|---|---|
Hypotheses | lsmspsn.v | |
|
lsmspsn.a | |
||
lsmspsn.f | |
||
lsmspsn.k | |
||
lsmspsn.t | |
||
lsmspsn.p | |
||
lsmspsn.n | |
||
lsmspsn.w | |
||
lsmspsn.x | |
||
lsmspsn.y | |
||
Assertion | lsmspsn | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | lsmspsn.v | |
|
2 | lsmspsn.a | |
|
3 | lsmspsn.f | |
|
4 | lsmspsn.k | |
|
5 | lsmspsn.t | |
|
6 | lsmspsn.p | |
|
7 | lsmspsn.n | |
|
8 | lsmspsn.w | |
|
9 | lsmspsn.x | |
|
10 | lsmspsn.y | |
|
11 | 1 7 | lspsnsubg | |
12 | 8 9 11 | syl2anc | |
13 | 1 7 | lspsnsubg | |
14 | 8 10 13 | syl2anc | |
15 | 2 6 | lsmelval | |
16 | 12 14 15 | syl2anc | |
17 | 3 4 1 5 7 | lspsnel | |
18 | 8 9 17 | syl2anc | |
19 | 3 4 1 5 7 | lspsnel | |
20 | 8 10 19 | syl2anc | |
21 | 18 20 | anbi12d | |
22 | 21 | biimpa | |
23 | 22 | biantrurd | |
24 | r19.41v | |
|
25 | 24 | rexbii | |
26 | r19.41v | |
|
27 | reeanv | |
|
28 | 27 | anbi1i | |
29 | 25 26 28 | 3bitrri | |
30 | 23 29 | bitrdi | |
31 | 30 | 2rexbidva | |
32 | rexrot4 | |
|
33 | 31 32 | bitrdi | |
34 | 8 | adantr | |
35 | simprl | |
|
36 | 9 | adantr | |
37 | 1 5 3 4 7 34 35 36 | lspsneli | |
38 | simprr | |
|
39 | 10 | adantr | |
40 | 1 5 3 4 7 34 38 39 | lspsneli | |
41 | oveq1 | |
|
42 | 41 | eqeq2d | |
43 | oveq2 | |
|
44 | 43 | eqeq2d | |
45 | 42 44 | ceqsrex2v | |
46 | 37 40 45 | syl2anc | |
47 | 46 | 2rexbidva | |
48 | 16 33 47 | 3bitrd | |