| Step | Hyp | Ref | Expression | 
						
							| 1 |  | lsmspsn.v |  | 
						
							| 2 |  | lsmspsn.a |  | 
						
							| 3 |  | lsmspsn.f |  | 
						
							| 4 |  | lsmspsn.k |  | 
						
							| 5 |  | lsmspsn.t |  | 
						
							| 6 |  | lsmspsn.p |  | 
						
							| 7 |  | lsmspsn.n |  | 
						
							| 8 |  | lsmspsn.w |  | 
						
							| 9 |  | lsmspsn.x |  | 
						
							| 10 |  | lsmspsn.y |  | 
						
							| 11 | 1 7 | lspsnsubg |  | 
						
							| 12 | 8 9 11 | syl2anc |  | 
						
							| 13 | 1 7 | lspsnsubg |  | 
						
							| 14 | 8 10 13 | syl2anc |  | 
						
							| 15 | 2 6 | lsmelval |  | 
						
							| 16 | 12 14 15 | syl2anc |  | 
						
							| 17 | 3 4 1 5 7 | ellspsn |  | 
						
							| 18 | 8 9 17 | syl2anc |  | 
						
							| 19 | 3 4 1 5 7 | ellspsn |  | 
						
							| 20 | 8 10 19 | syl2anc |  | 
						
							| 21 | 18 20 | anbi12d |  | 
						
							| 22 | 21 | biimpa |  | 
						
							| 23 | 22 | biantrurd |  | 
						
							| 24 |  | r19.41v |  | 
						
							| 25 | 24 | rexbii |  | 
						
							| 26 |  | r19.41v |  | 
						
							| 27 |  | reeanv |  | 
						
							| 28 | 27 | anbi1i |  | 
						
							| 29 | 25 26 28 | 3bitrri |  | 
						
							| 30 | 23 29 | bitrdi |  | 
						
							| 31 | 30 | 2rexbidva |  | 
						
							| 32 |  | rexrot4 |  | 
						
							| 33 | 31 32 | bitrdi |  | 
						
							| 34 | 8 | adantr |  | 
						
							| 35 |  | simprl |  | 
						
							| 36 | 9 | adantr |  | 
						
							| 37 | 1 5 3 4 7 34 35 36 | ellspsni |  | 
						
							| 38 |  | simprr |  | 
						
							| 39 | 10 | adantr |  | 
						
							| 40 | 1 5 3 4 7 34 38 39 | ellspsni |  | 
						
							| 41 |  | oveq1 |  | 
						
							| 42 | 41 | eqeq2d |  | 
						
							| 43 |  | oveq2 |  | 
						
							| 44 | 43 | eqeq2d |  | 
						
							| 45 | 42 44 | ceqsrex2v |  | 
						
							| 46 | 37 40 45 | syl2anc |  | 
						
							| 47 | 46 | 2rexbidva |  | 
						
							| 48 | 16 33 47 | 3bitrd |  |