Metamath Proof Explorer


Theorem lspsnsubg

Description: The span of a singleton is an additive subgroup (frequently used special case of lspcl ). (Contributed by Mario Carneiro, 21-Apr-2016)

Ref Expression
Hypotheses lspsnsubg.v V=BaseW
lspsnsubg.n N=LSpanW
Assertion lspsnsubg WLModXVNXSubGrpW

Proof

Step Hyp Ref Expression
1 lspsnsubg.v V=BaseW
2 lspsnsubg.n N=LSpanW
3 eqid LSubSpW=LSubSpW
4 1 3 2 lspsncl WLModXVNXLSubSpW
5 3 lsssubg WLModNXLSubSpWNXSubGrpW
6 4 5 syldan WLModXVNXSubGrpW