Metamath Proof Explorer


Theorem lspsnsubg

Description: The span of a singleton is an additive subgroup (frequently used special case of lspcl ). (Contributed by Mario Carneiro, 21-Apr-2016)

Ref Expression
Hypotheses lspsnsubg.v 𝑉 = ( Base ‘ 𝑊 )
lspsnsubg.n 𝑁 = ( LSpan ‘ 𝑊 )
Assertion lspsnsubg ( ( 𝑊 ∈ LMod ∧ 𝑋𝑉 ) → ( 𝑁 ‘ { 𝑋 } ) ∈ ( SubGrp ‘ 𝑊 ) )

Proof

Step Hyp Ref Expression
1 lspsnsubg.v 𝑉 = ( Base ‘ 𝑊 )
2 lspsnsubg.n 𝑁 = ( LSpan ‘ 𝑊 )
3 eqid ( LSubSp ‘ 𝑊 ) = ( LSubSp ‘ 𝑊 )
4 1 3 2 lspsncl ( ( 𝑊 ∈ LMod ∧ 𝑋𝑉 ) → ( 𝑁 ‘ { 𝑋 } ) ∈ ( LSubSp ‘ 𝑊 ) )
5 3 lsssubg ( ( 𝑊 ∈ LMod ∧ ( 𝑁 ‘ { 𝑋 } ) ∈ ( LSubSp ‘ 𝑊 ) ) → ( 𝑁 ‘ { 𝑋 } ) ∈ ( SubGrp ‘ 𝑊 ) )
6 4 5 syldan ( ( 𝑊 ∈ LMod ∧ 𝑋𝑉 ) → ( 𝑁 ‘ { 𝑋 } ) ∈ ( SubGrp ‘ 𝑊 ) )