Metamath Proof Explorer


Theorem 00lsp

Description: fvco4i lemma for linear spans. (Contributed by Stefan O'Rear, 4-Apr-2015)

Ref Expression
Assertion 00lsp ∅ = ( LSpan ‘ ∅ )

Proof

Step Hyp Ref Expression
1 0ex ∅ ∈ V
2 base0 ∅ = ( Base ‘ ∅ )
3 00lss ∅ = ( LSubSp ‘ ∅ )
4 eqid ( LSpan ‘ ∅ ) = ( LSpan ‘ ∅ )
5 2 3 4 lspfval ( ∅ ∈ V → ( LSpan ‘ ∅ ) = ( 𝑎 ∈ 𝒫 ∅ ↦ { 𝑏 ∈ ∅ ∣ 𝑎𝑏 } ) )
6 1 5 ax-mp ( LSpan ‘ ∅ ) = ( 𝑎 ∈ 𝒫 ∅ ↦ { 𝑏 ∈ ∅ ∣ 𝑎𝑏 } )
7 eqid ( 𝑎 ∈ 𝒫 ∅ ↦ { 𝑏 ∈ ∅ ∣ 𝑎𝑏 } ) = ( 𝑎 ∈ 𝒫 ∅ ↦ { 𝑏 ∈ ∅ ∣ 𝑎𝑏 } )
8 7 dmmpt dom ( 𝑎 ∈ 𝒫 ∅ ↦ { 𝑏 ∈ ∅ ∣ 𝑎𝑏 } ) = { 𝑎 ∈ 𝒫 ∅ ∣ { 𝑏 ∈ ∅ ∣ 𝑎𝑏 } ∈ V }
9 rab0 { 𝑏 ∈ ∅ ∣ 𝑎𝑏 } = ∅
10 9 inteqi { 𝑏 ∈ ∅ ∣ 𝑎𝑏 } =
11 int0 ∅ = V
12 10 11 eqtri { 𝑏 ∈ ∅ ∣ 𝑎𝑏 } = V
13 vprc ¬ V ∈ V
14 12 13 eqneltri ¬ { 𝑏 ∈ ∅ ∣ 𝑎𝑏 } ∈ V
15 14 rgenw 𝑎 ∈ 𝒫 ∅ ¬ { 𝑏 ∈ ∅ ∣ 𝑎𝑏 } ∈ V
16 rabeq0 ( { 𝑎 ∈ 𝒫 ∅ ∣ { 𝑏 ∈ ∅ ∣ 𝑎𝑏 } ∈ V } = ∅ ↔ ∀ 𝑎 ∈ 𝒫 ∅ ¬ { 𝑏 ∈ ∅ ∣ 𝑎𝑏 } ∈ V )
17 15 16 mpbir { 𝑎 ∈ 𝒫 ∅ ∣ { 𝑏 ∈ ∅ ∣ 𝑎𝑏 } ∈ V } = ∅
18 8 17 eqtri dom ( 𝑎 ∈ 𝒫 ∅ ↦ { 𝑏 ∈ ∅ ∣ 𝑎𝑏 } ) = ∅
19 mptrel Rel ( 𝑎 ∈ 𝒫 ∅ ↦ { 𝑏 ∈ ∅ ∣ 𝑎𝑏 } )
20 reldm0 ( Rel ( 𝑎 ∈ 𝒫 ∅ ↦ { 𝑏 ∈ ∅ ∣ 𝑎𝑏 } ) → ( ( 𝑎 ∈ 𝒫 ∅ ↦ { 𝑏 ∈ ∅ ∣ 𝑎𝑏 } ) = ∅ ↔ dom ( 𝑎 ∈ 𝒫 ∅ ↦ { 𝑏 ∈ ∅ ∣ 𝑎𝑏 } ) = ∅ ) )
21 19 20 ax-mp ( ( 𝑎 ∈ 𝒫 ∅ ↦ { 𝑏 ∈ ∅ ∣ 𝑎𝑏 } ) = ∅ ↔ dom ( 𝑎 ∈ 𝒫 ∅ ↦ { 𝑏 ∈ ∅ ∣ 𝑎𝑏 } ) = ∅ )
22 18 21 mpbir ( 𝑎 ∈ 𝒫 ∅ ↦ { 𝑏 ∈ ∅ ∣ 𝑎𝑏 } ) = ∅
23 6 22 eqtr2i ∅ = ( LSpan ‘ ∅ )