Metamath Proof Explorer


Theorem 00lsp

Description: fvco4i lemma for linear spans. (Contributed by Stefan O'Rear, 4-Apr-2015)

Ref Expression
Assertion 00lsp =LSpan

Proof

Step Hyp Ref Expression
1 0ex V
2 base0 =Base
3 00lss =LSubSp
4 eqid LSpan=LSpan
5 2 3 4 lspfval VLSpan=a𝒫b|ab
6 1 5 ax-mp LSpan=a𝒫b|ab
7 eqid a𝒫b|ab=a𝒫b|ab
8 7 dmmpt doma𝒫b|ab=a𝒫|b|abV
9 rab0 b|ab=
10 9 inteqi b|ab=
11 int0 =V
12 10 11 eqtri b|ab=V
13 vprc ¬VV
14 12 13 eqneltri ¬b|abV
15 14 rgenw a𝒫¬b|abV
16 rabeq0 a𝒫|b|abV=a𝒫¬b|abV
17 15 16 mpbir a𝒫|b|abV=
18 8 17 eqtri doma𝒫b|ab=
19 mptrel Rela𝒫b|ab
20 reldm0 Rela𝒫b|aba𝒫b|ab=doma𝒫b|ab=
21 19 20 ax-mp a𝒫b|ab=doma𝒫b|ab=
22 18 21 mpbir a𝒫b|ab=
23 6 22 eqtr2i =LSpan