Metamath Proof Explorer


Theorem eqneltri

Description: If a class is not an element of another class, an equal class is also not an element. (Contributed by Glauco Siliprandi, 3-Jan-2021)

Ref Expression
Hypotheses eqneltri.1 A = B
eqneltri.2 ¬ B C
Assertion eqneltri ¬ A C

Proof

Step Hyp Ref Expression
1 eqneltri.1 A = B
2 eqneltri.2 ¬ B C
3 1 eleq1i A C B C
4 2 3 mtbir ¬ A C