Metamath Proof Explorer
Description: If a class is not an element of another class, an equal class is also
not an element. (Contributed by Glauco Siliprandi, 3-Jan-2021)
|
|
Ref |
Expression |
|
Hypotheses |
eqneltri.1 |
|
|
|
eqneltri.2 |
|
|
Assertion |
eqneltri |
|
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
eqneltri.1 |
|
2 |
|
eqneltri.2 |
|
3 |
1
|
eleq1i |
|
4 |
2 3
|
mtbir |
|