Metamath Proof Explorer
Description: If a class is not an element of another class, an equal class is also
not an element. (Contributed by Glauco Siliprandi, 3-Jan-2021)
|
|
Ref |
Expression |
|
Hypotheses |
eqneltri.1 |
|- A = B |
|
|
eqneltri.2 |
|- -. B e. C |
|
Assertion |
eqneltri |
|- -. A e. C |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
eqneltri.1 |
|- A = B |
2 |
|
eqneltri.2 |
|- -. B e. C |
3 |
1
|
eleq1i |
|- ( A e. C <-> B e. C ) |
4 |
2 3
|
mtbir |
|- -. A e. C |