Description: If a class is not an element of another class, an equal class is also not an element. Deduction form. (Contributed by David Moews, 1-May-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | eqneltrd.1 | |- ( ph -> A = B ) |
|
eqneltrd.2 | |- ( ph -> -. B e. C ) |
||
Assertion | eqneltrd | |- ( ph -> -. A e. C ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | eqneltrd.1 | |- ( ph -> A = B ) |
|
2 | eqneltrd.2 | |- ( ph -> -. B e. C ) |
|
3 | 1 | eleq1d | |- ( ph -> ( A e. C <-> B e. C ) ) |
4 | 2 3 | mtbird | |- ( ph -> -. A e. C ) |