Metamath Proof Explorer


Theorem eqneltrd

Description: If a class is not an element of another class, an equal class is also not an element. Deduction form. (Contributed by David Moews, 1-May-2017)

Ref Expression
Hypotheses eqneltrd.1
|- ( ph -> A = B )
eqneltrd.2
|- ( ph -> -. B e. C )
Assertion eqneltrd
|- ( ph -> -. A e. C )

Proof

Step Hyp Ref Expression
1 eqneltrd.1
 |-  ( ph -> A = B )
2 eqneltrd.2
 |-  ( ph -> -. B e. C )
3 1 eleq1d
 |-  ( ph -> ( A e. C <-> B e. C ) )
4 2 3 mtbird
 |-  ( ph -> -. A e. C )