Metamath Proof Explorer


Theorem eqneltrd

Description: If a class is not an element of another class, an equal class is also not an element. Deduction form. (Contributed by David Moews, 1-May-2017)

Ref Expression
Hypotheses eqneltrd.1 φ A = B
eqneltrd.2 φ ¬ B C
Assertion eqneltrd φ ¬ A C

Proof

Step Hyp Ref Expression
1 eqneltrd.1 φ A = B
2 eqneltrd.2 φ ¬ B C
3 1 eleq1d φ A C B C
4 2 3 mtbird φ ¬ A C