Metamath Proof Explorer


Theorem lspsneli

Description: A scalar product with a vector belongs to the span of its singleton. ( spansnmul analog.) (Contributed by NM, 2-Jul-2014)

Ref Expression
Hypotheses lspsnvsel.v V = Base W
lspsnvsel.t · ˙ = W
lspsnvsel.f F = Scalar W
lspsnvsel.k K = Base F
lspsnvsel.n N = LSpan W
lspsnvsel.w φ W LMod
lspsnvsel.a φ A K
lspsnvsel.x φ X V
Assertion lspsneli φ A · ˙ X N X

Proof

Step Hyp Ref Expression
1 lspsnvsel.v V = Base W
2 lspsnvsel.t · ˙ = W
3 lspsnvsel.f F = Scalar W
4 lspsnvsel.k K = Base F
5 lspsnvsel.n N = LSpan W
6 lspsnvsel.w φ W LMod
7 lspsnvsel.a φ A K
8 lspsnvsel.x φ X V
9 eqid LSubSp W = LSubSp W
10 1 9 5 lspsncl W LMod X V N X LSubSp W
11 6 8 10 syl2anc φ N X LSubSp W
12 1 5 lspsnid W LMod X V X N X
13 6 8 12 syl2anc φ X N X
14 3 2 4 9 lssvscl W LMod N X LSubSp W A K X N X A · ˙ X N X
15 6 11 7 13 14 syl22anc φ A · ˙ X N X