Metamath Proof Explorer


Theorem lspsneli

Description: A scalar product with a vector belongs to the span of its singleton. ( spansnmul analog.) (Contributed by NM, 2-Jul-2014)

Ref Expression
Hypotheses lspsnvsel.v 𝑉 = ( Base ‘ 𝑊 )
lspsnvsel.t · = ( ·𝑠𝑊 )
lspsnvsel.f 𝐹 = ( Scalar ‘ 𝑊 )
lspsnvsel.k 𝐾 = ( Base ‘ 𝐹 )
lspsnvsel.n 𝑁 = ( LSpan ‘ 𝑊 )
lspsnvsel.w ( 𝜑𝑊 ∈ LMod )
lspsnvsel.a ( 𝜑𝐴𝐾 )
lspsnvsel.x ( 𝜑𝑋𝑉 )
Assertion lspsneli ( 𝜑 → ( 𝐴 · 𝑋 ) ∈ ( 𝑁 ‘ { 𝑋 } ) )

Proof

Step Hyp Ref Expression
1 lspsnvsel.v 𝑉 = ( Base ‘ 𝑊 )
2 lspsnvsel.t · = ( ·𝑠𝑊 )
3 lspsnvsel.f 𝐹 = ( Scalar ‘ 𝑊 )
4 lspsnvsel.k 𝐾 = ( Base ‘ 𝐹 )
5 lspsnvsel.n 𝑁 = ( LSpan ‘ 𝑊 )
6 lspsnvsel.w ( 𝜑𝑊 ∈ LMod )
7 lspsnvsel.a ( 𝜑𝐴𝐾 )
8 lspsnvsel.x ( 𝜑𝑋𝑉 )
9 eqid ( LSubSp ‘ 𝑊 ) = ( LSubSp ‘ 𝑊 )
10 1 9 5 lspsncl ( ( 𝑊 ∈ LMod ∧ 𝑋𝑉 ) → ( 𝑁 ‘ { 𝑋 } ) ∈ ( LSubSp ‘ 𝑊 ) )
11 6 8 10 syl2anc ( 𝜑 → ( 𝑁 ‘ { 𝑋 } ) ∈ ( LSubSp ‘ 𝑊 ) )
12 1 5 lspsnid ( ( 𝑊 ∈ LMod ∧ 𝑋𝑉 ) → 𝑋 ∈ ( 𝑁 ‘ { 𝑋 } ) )
13 6 8 12 syl2anc ( 𝜑𝑋 ∈ ( 𝑁 ‘ { 𝑋 } ) )
14 3 2 4 9 lssvscl ( ( ( 𝑊 ∈ LMod ∧ ( 𝑁 ‘ { 𝑋 } ) ∈ ( LSubSp ‘ 𝑊 ) ) ∧ ( 𝐴𝐾𝑋 ∈ ( 𝑁 ‘ { 𝑋 } ) ) ) → ( 𝐴 · 𝑋 ) ∈ ( 𝑁 ‘ { 𝑋 } ) )
15 6 11 7 13 14 syl22anc ( 𝜑 → ( 𝐴 · 𝑋 ) ∈ ( 𝑁 ‘ { 𝑋 } ) )