| Step |
Hyp |
Ref |
Expression |
| 1 |
|
spansnsh |
⊢ ( 𝐴 ∈ ℋ → ( span ‘ { 𝐴 } ) ∈ Sℋ ) |
| 2 |
|
spansnid |
⊢ ( 𝐴 ∈ ℋ → 𝐴 ∈ ( span ‘ { 𝐴 } ) ) |
| 3 |
1 2
|
jca |
⊢ ( 𝐴 ∈ ℋ → ( ( span ‘ { 𝐴 } ) ∈ Sℋ ∧ 𝐴 ∈ ( span ‘ { 𝐴 } ) ) ) |
| 4 |
|
shmulcl |
⊢ ( ( ( span ‘ { 𝐴 } ) ∈ Sℋ ∧ 𝐵 ∈ ℂ ∧ 𝐴 ∈ ( span ‘ { 𝐴 } ) ) → ( 𝐵 ·ℎ 𝐴 ) ∈ ( span ‘ { 𝐴 } ) ) |
| 5 |
4
|
3com12 |
⊢ ( ( 𝐵 ∈ ℂ ∧ ( span ‘ { 𝐴 } ) ∈ Sℋ ∧ 𝐴 ∈ ( span ‘ { 𝐴 } ) ) → ( 𝐵 ·ℎ 𝐴 ) ∈ ( span ‘ { 𝐴 } ) ) |
| 6 |
5
|
3expb |
⊢ ( ( 𝐵 ∈ ℂ ∧ ( ( span ‘ { 𝐴 } ) ∈ Sℋ ∧ 𝐴 ∈ ( span ‘ { 𝐴 } ) ) ) → ( 𝐵 ·ℎ 𝐴 ) ∈ ( span ‘ { 𝐴 } ) ) |
| 7 |
3 6
|
sylan2 |
⊢ ( ( 𝐵 ∈ ℂ ∧ 𝐴 ∈ ℋ ) → ( 𝐵 ·ℎ 𝐴 ) ∈ ( span ‘ { 𝐴 } ) ) |
| 8 |
7
|
ancoms |
⊢ ( ( 𝐴 ∈ ℋ ∧ 𝐵 ∈ ℂ ) → ( 𝐵 ·ℎ 𝐴 ) ∈ ( span ‘ { 𝐴 } ) ) |