Metamath Proof Explorer


Theorem shmulcl

Description: Closure of vector scalar multiplication in a subspace of a Hilbert space. (Contributed by NM, 13-Sep-1999) (New usage is discouraged.)

Ref Expression
Assertion shmulcl ( ( 𝐻S𝐴 ∈ ℂ ∧ 𝐵𝐻 ) → ( 𝐴 · 𝐵 ) ∈ 𝐻 )

Proof

Step Hyp Ref Expression
1 issh2 ( 𝐻S ↔ ( ( 𝐻 ⊆ ℋ ∧ 0𝐻 ) ∧ ( ∀ 𝑥𝐻𝑦𝐻 ( 𝑥 + 𝑦 ) ∈ 𝐻 ∧ ∀ 𝑥 ∈ ℂ ∀ 𝑦𝐻 ( 𝑥 · 𝑦 ) ∈ 𝐻 ) ) )
2 1 simprbi ( 𝐻S → ( ∀ 𝑥𝐻𝑦𝐻 ( 𝑥 + 𝑦 ) ∈ 𝐻 ∧ ∀ 𝑥 ∈ ℂ ∀ 𝑦𝐻 ( 𝑥 · 𝑦 ) ∈ 𝐻 ) )
3 2 simprd ( 𝐻S → ∀ 𝑥 ∈ ℂ ∀ 𝑦𝐻 ( 𝑥 · 𝑦 ) ∈ 𝐻 )
4 oveq1 ( 𝑥 = 𝐴 → ( 𝑥 · 𝑦 ) = ( 𝐴 · 𝑦 ) )
5 4 eleq1d ( 𝑥 = 𝐴 → ( ( 𝑥 · 𝑦 ) ∈ 𝐻 ↔ ( 𝐴 · 𝑦 ) ∈ 𝐻 ) )
6 oveq2 ( 𝑦 = 𝐵 → ( 𝐴 · 𝑦 ) = ( 𝐴 · 𝐵 ) )
7 6 eleq1d ( 𝑦 = 𝐵 → ( ( 𝐴 · 𝑦 ) ∈ 𝐻 ↔ ( 𝐴 · 𝐵 ) ∈ 𝐻 ) )
8 5 7 rspc2v ( ( 𝐴 ∈ ℂ ∧ 𝐵𝐻 ) → ( ∀ 𝑥 ∈ ℂ ∀ 𝑦𝐻 ( 𝑥 · 𝑦 ) ∈ 𝐻 → ( 𝐴 · 𝐵 ) ∈ 𝐻 ) )
9 3 8 syl5com ( 𝐻S → ( ( 𝐴 ∈ ℂ ∧ 𝐵𝐻 ) → ( 𝐴 · 𝐵 ) ∈ 𝐻 ) )
10 9 3impib ( ( 𝐻S𝐴 ∈ ℂ ∧ 𝐵𝐻 ) → ( 𝐴 · 𝐵 ) ∈ 𝐻 )