Metamath Proof Explorer


Theorem lspsn

Description: Span of the singleton of a vector. (Contributed by NM, 14-Jan-2014) (Proof shortened by Mario Carneiro, 19-Jun-2014)

Ref Expression
Hypotheses lspsn.f F = Scalar W
lspsn.k K = Base F
lspsn.v V = Base W
lspsn.t · ˙ = W
lspsn.n N = LSpan W
Assertion lspsn W LMod X V N X = v | k K v = k · ˙ X

Proof

Step Hyp Ref Expression
1 lspsn.f F = Scalar W
2 lspsn.k K = Base F
3 lspsn.v V = Base W
4 lspsn.t · ˙ = W
5 lspsn.n N = LSpan W
6 eqid LSubSp W = LSubSp W
7 simpl W LMod X V W LMod
8 3 1 4 2 6 lss1d W LMod X V v | k K v = k · ˙ X LSubSp W
9 eqid 1 F = 1 F
10 1 2 9 lmod1cl W LMod 1 F K
11 3 1 4 9 lmodvs1 W LMod X V 1 F · ˙ X = X
12 11 eqcomd W LMod X V X = 1 F · ˙ X
13 oveq1 k = 1 F k · ˙ X = 1 F · ˙ X
14 13 rspceeqv 1 F K X = 1 F · ˙ X k K X = k · ˙ X
15 10 12 14 syl2an2r W LMod X V k K X = k · ˙ X
16 eqeq1 v = X v = k · ˙ X X = k · ˙ X
17 16 rexbidv v = X k K v = k · ˙ X k K X = k · ˙ X
18 17 elabg X V X v | k K v = k · ˙ X k K X = k · ˙ X
19 18 adantl W LMod X V X v | k K v = k · ˙ X k K X = k · ˙ X
20 15 19 mpbird W LMod X V X v | k K v = k · ˙ X
21 6 5 7 8 20 lspsnel5a W LMod X V N X v | k K v = k · ˙ X
22 7 adantr W LMod X V k K W LMod
23 3 6 5 lspsncl W LMod X V N X LSubSp W
24 23 adantr W LMod X V k K N X LSubSp W
25 simpr W LMod X V k K k K
26 3 5 lspsnid W LMod X V X N X
27 26 adantr W LMod X V k K X N X
28 1 4 2 6 lssvscl W LMod N X LSubSp W k K X N X k · ˙ X N X
29 22 24 25 27 28 syl22anc W LMod X V k K k · ˙ X N X
30 eleq1a k · ˙ X N X v = k · ˙ X v N X
31 29 30 syl W LMod X V k K v = k · ˙ X v N X
32 31 rexlimdva W LMod X V k K v = k · ˙ X v N X
33 32 abssdv W LMod X V v | k K v = k · ˙ X N X
34 21 33 eqssd W LMod X V N X = v | k K v = k · ˙ X