Metamath Proof Explorer


Theorem ceqsrex2v

Description: Elimination of a restricted existential quantifier, using implicit substitution. (Contributed by NM, 29-Oct-2005)

Ref Expression
Hypotheses ceqsrex2v.1 x=Aφψ
ceqsrex2v.2 y=Bψχ
Assertion ceqsrex2v ACBDxCyDx=Ay=Bφχ

Proof

Step Hyp Ref Expression
1 ceqsrex2v.1 x=Aφψ
2 ceqsrex2v.2 y=Bψχ
3 anass x=Ay=Bφx=Ay=Bφ
4 3 rexbii yDx=Ay=BφyDx=Ay=Bφ
5 r19.42v yDx=Ay=Bφx=AyDy=Bφ
6 4 5 bitri yDx=Ay=Bφx=AyDy=Bφ
7 6 rexbii xCyDx=Ay=BφxCx=AyDy=Bφ
8 1 anbi2d x=Ay=Bφy=Bψ
9 8 rexbidv x=AyDy=BφyDy=Bψ
10 9 ceqsrexv ACxCx=AyDy=BφyDy=Bψ
11 7 10 bitrid ACxCyDx=Ay=BφyDy=Bψ
12 2 ceqsrexv BDyDy=Bψχ
13 11 12 sylan9bb ACBDxCyDx=Ay=Bφχ