Step |
Hyp |
Ref |
Expression |
1 |
|
lbspropd.b1 |
|
2 |
|
lbspropd.b2 |
|
3 |
|
lbspropd.w |
|
4 |
|
lbspropd.p |
|
5 |
|
lbspropd.s1 |
|
6 |
|
lbspropd.s2 |
|
7 |
|
lbspropd.f |
|
8 |
|
lbspropd.g |
|
9 |
|
lbspropd.p1 |
|
10 |
|
lbspropd.p2 |
|
11 |
|
lbspropd.a |
|
12 |
|
lbspropd.v1 |
|
13 |
|
lbspropd.v2 |
|
14 |
|
simplll |
|
15 |
|
eldifi |
|
16 |
15
|
adantl |
|
17 |
|
simpr |
|
18 |
17
|
sselda |
|
19 |
18
|
adantr |
|
20 |
6
|
oveqrspc2v |
|
21 |
14 16 19 20
|
syl12anc |
|
22 |
7
|
fveq2i |
|
23 |
9 22
|
eqtrdi |
|
24 |
8
|
fveq2i |
|
25 |
10 24
|
eqtrdi |
|
26 |
1 2 3 4 5 6 23 25 12 13
|
lsppropd |
|
27 |
14 26
|
syl |
|
28 |
27
|
fveq1d |
|
29 |
21 28
|
eleq12d |
|
30 |
29
|
notbid |
|
31 |
30
|
ralbidva |
|
32 |
9
|
ad2antrr |
|
33 |
32
|
difeq1d |
|
34 |
33
|
raleqdv |
|
35 |
10
|
ad2antrr |
|
36 |
9 10 11
|
grpidpropd |
|
37 |
36
|
ad2antrr |
|
38 |
37
|
sneqd |
|
39 |
35 38
|
difeq12d |
|
40 |
39
|
raleqdv |
|
41 |
31 34 40
|
3bitr3d |
|
42 |
41
|
ralbidva |
|
43 |
42
|
anbi2d |
|
44 |
43
|
pm5.32da |
|
45 |
1
|
sseq2d |
|
46 |
45
|
anbi1d |
|
47 |
2
|
sseq2d |
|
48 |
26
|
fveq1d |
|
49 |
1 2
|
eqtr3d |
|
50 |
48 49
|
eqeq12d |
|
51 |
50
|
anbi1d |
|
52 |
47 51
|
anbi12d |
|
53 |
44 46 52
|
3bitr3d |
|
54 |
|
3anass |
|
55 |
|
3anass |
|
56 |
53 54 55
|
3bitr4g |
|
57 |
|
eqid |
|
58 |
|
eqid |
|
59 |
|
eqid |
|
60 |
|
eqid |
|
61 |
|
eqid |
|
62 |
|
eqid |
|
63 |
57 7 58 59 60 61 62
|
islbs |
|
64 |
12 63
|
syl |
|
65 |
|
eqid |
|
66 |
|
eqid |
|
67 |
|
eqid |
|
68 |
|
eqid |
|
69 |
|
eqid |
|
70 |
|
eqid |
|
71 |
65 8 66 67 68 69 70
|
islbs |
|
72 |
13 71
|
syl |
|
73 |
56 64 72
|
3bitr4d |
|
74 |
73
|
eqrdv |
|