Metamath Proof Explorer


Definition df-lbs

Description: Define the set of bases to a left module or left vector space. (Contributed by Mario Carneiro, 24-Jun-2014)

Ref Expression
Assertion df-lbs LBasis=wVb𝒫Basew|[˙LSpanw/n]˙[˙Scalarw/s]˙nb=BasewxbyBases0s¬ywxnbx

Detailed syntax breakdown

Step Hyp Ref Expression
0 clbs classLBasis
1 vw setvarw
2 cvv classV
3 vb setvarb
4 cbs classBase
5 1 cv setvarw
6 5 4 cfv classBasew
7 6 cpw class𝒫Basew
8 clspn classLSpan
9 5 8 cfv classLSpanw
10 vn setvarn
11 csca classScalar
12 5 11 cfv classScalarw
13 vs setvars
14 10 cv setvarn
15 3 cv setvarb
16 15 14 cfv classnb
17 16 6 wceq wffnb=Basew
18 vx setvarx
19 vy setvary
20 13 cv setvars
21 20 4 cfv classBases
22 c0g class0𝑔
23 20 22 cfv class0s
24 23 csn class0s
25 21 24 cdif classBases0s
26 19 cv setvary
27 cvsca class𝑠
28 5 27 cfv classw
29 18 cv setvarx
30 26 29 28 co classywx
31 29 csn classx
32 15 31 cdif classbx
33 32 14 cfv classnbx
34 30 33 wcel wffywxnbx
35 34 wn wff¬ywxnbx
36 35 19 25 wral wffyBases0s¬ywxnbx
37 36 18 15 wral wffxbyBases0s¬ywxnbx
38 17 37 wa wffnb=BasewxbyBases0s¬ywxnbx
39 38 13 12 wsbc wff[˙Scalarw/s]˙nb=BasewxbyBases0s¬ywxnbx
40 39 10 9 wsbc wff[˙LSpanw/n]˙[˙Scalarw/s]˙nb=BasewxbyBases0s¬ywxnbx
41 40 3 7 crab classb𝒫Basew|[˙LSpanw/n]˙[˙Scalarw/s]˙nb=BasewxbyBases0s¬ywxnbx
42 1 2 41 cmpt classwVb𝒫Basew|[˙LSpanw/n]˙[˙Scalarw/s]˙nb=BasewxbyBases0s¬ywxnbx
43 0 42 wceq wffLBasis=wVb𝒫Basew|[˙LSpanw/n]˙[˙Scalarw/s]˙nb=BasewxbyBases0s¬ywxnbx