Metamath Proof Explorer


Theorem basndxelwund

Description: The index of the base set is an element in a weak universe containing the natural numbers. Formerly part of proof for 1strwun . (Contributed by AV, 27-Mar-2020) (Revised by AV, 17-Oct-2024)

Ref Expression
Hypotheses basndxelwund.u
|- ( ph -> U e. WUni )
basndxelwund.o
|- ( ph -> _om e. U )
Assertion basndxelwund
|- ( ph -> ( Base ` ndx ) e. U )

Proof

Step Hyp Ref Expression
1 basndxelwund.u
 |-  ( ph -> U e. WUni )
2 basndxelwund.o
 |-  ( ph -> _om e. U )
3 baseid
 |-  Base = Slot ( Base ` ndx )
4 1 2 wunndx
 |-  ( ph -> ndx e. U )
5 3 1 4 wunstr
 |-  ( ph -> ( Base ` ndx ) e. U )