Metamath Proof Explorer


Theorem basndxelwund

Description: The index of the base set is an element in a weak universe containing the natural numbers. Formerly part of proof for 1strwun . (Contributed by AV, 27-Mar-2020) (Revised by AV, 17-Oct-2024)

Ref Expression
Hypotheses basndxelwund.u ( 𝜑𝑈 ∈ WUni )
basndxelwund.o ( 𝜑 → ω ∈ 𝑈 )
Assertion basndxelwund ( 𝜑 → ( Base ‘ ndx ) ∈ 𝑈 )

Proof

Step Hyp Ref Expression
1 basndxelwund.u ( 𝜑𝑈 ∈ WUni )
2 basndxelwund.o ( 𝜑 → ω ∈ 𝑈 )
3 baseid Base = Slot ( Base ‘ ndx )
4 1 2 wunndx ( 𝜑 → ndx ∈ 𝑈 )
5 3 1 4 wunstr ( 𝜑 → ( Base ‘ ndx ) ∈ 𝑈 )