Metamath Proof Explorer
Description: A constructed one-slot structure in a weak universe. (Contributed by AV, 27-Mar-2020) (Proof shortened by AV, 17-Oct-2024)
|
|
Ref |
Expression |
|
Hypotheses |
1str.g |
⊢ 𝐺 = { 〈 ( Base ‘ ndx ) , 𝐵 〉 } |
|
|
1strwun.u |
⊢ ( 𝜑 → 𝑈 ∈ WUni ) |
|
|
1strwun.o |
⊢ ( 𝜑 → ω ∈ 𝑈 ) |
|
Assertion |
1strwun |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ 𝑈 ) → 𝐺 ∈ 𝑈 ) |
Proof
Step |
Hyp |
Ref |
Expression |
1 |
|
1str.g |
⊢ 𝐺 = { 〈 ( Base ‘ ndx ) , 𝐵 〉 } |
2 |
|
1strwun.u |
⊢ ( 𝜑 → 𝑈 ∈ WUni ) |
3 |
|
1strwun.o |
⊢ ( 𝜑 → ω ∈ 𝑈 ) |
4 |
2 3
|
basndxelwund |
⊢ ( 𝜑 → ( Base ‘ ndx ) ∈ 𝑈 ) |
5 |
1 2 4
|
1strwunbndx |
⊢ ( ( 𝜑 ∧ 𝐵 ∈ 𝑈 ) → 𝐺 ∈ 𝑈 ) |