Metamath Proof Explorer


Theorem 1strwunOLD

Description: Obsolete version of 1strwun as of 17-Oct-2024. A constructed one-slot structure in a weak universe. (Contributed by AV, 27-Mar-2020) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses 1str.g 𝐺 = { ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ }
1strwun.u ( 𝜑𝑈 ∈ WUni )
1strwun.o ( 𝜑 → ω ∈ 𝑈 )
Assertion 1strwunOLD ( ( 𝜑𝐵𝑈 ) → 𝐺𝑈 )

Proof

Step Hyp Ref Expression
1 1str.g 𝐺 = { ⟨ ( Base ‘ ndx ) , 𝐵 ⟩ }
2 1strwun.u ( 𝜑𝑈 ∈ WUni )
3 1strwun.o ( 𝜑 → ω ∈ 𝑈 )
4 df-base Base = Slot 1
5 2 3 wunndx ( 𝜑 → ndx ∈ 𝑈 )
6 4 2 5 wunstr ( 𝜑 → ( Base ‘ ndx ) ∈ 𝑈 )
7 1 2 6 1strwunbndx ( ( 𝜑𝐵𝑈 ) → 𝐺𝑈 )