Metamath Proof Explorer


Theorem 1strwun

Description: A constructed one-slot structure in a weak universe. (Contributed by AV, 27-Mar-2020) (Proof shortened by AV, 17-Oct-2024)

Ref Expression
Hypotheses 1str.g G = Base ndx B
1strwun.u φ U WUni
1strwun.o φ ω U
Assertion 1strwun φ B U G U

Proof

Step Hyp Ref Expression
1 1str.g G = Base ndx B
2 1strwun.u φ U WUni
3 1strwun.o φ ω U
4 2 3 basndxelwund φ Base ndx U
5 1 2 4 1strwunbndx φ B U G U