Metamath Proof Explorer


Theorem 1strwun

Description: A constructed one-slot structure in a weak universe. (Contributed by AV, 27-Mar-2020) (Proof shortened by AV, 17-Oct-2024)

Ref Expression
Hypotheses 1str.g G=BasendxB
1strwun.u φUWUni
1strwun.o φωU
Assertion 1strwun φBUGU

Proof

Step Hyp Ref Expression
1 1str.g G=BasendxB
2 1strwun.u φUWUni
3 1strwun.o φωU
4 2 3 basndxelwund φBasendxU
5 1 2 4 1strwunbndx φBUGU