Metamath Proof Explorer


Theorem 1strwunbndx

Description: A constructed one-slot structure in a weak universe containing the index of the base set extractor. (Contributed by AV, 27-Mar-2020)

Ref Expression
Hypotheses 1str.g G=BasendxB
1strwun.u φUWUni
1strwunbndx.b φBasendxU
Assertion 1strwunbndx φBUGU

Proof

Step Hyp Ref Expression
1 1str.g G=BasendxB
2 1strwun.u φUWUni
3 1strwunbndx.b φBasendxU
4 2 adantr φBUUWUni
5 3 adantr φBUBasendxU
6 simpr φBUBU
7 4 5 6 wunop φBUBasendxBU
8 4 7 wunsn φBUBasendxBU
9 1 8 eqeltrid φBUGU