Metamath Proof Explorer


Theorem basprssdmsets

Description: The pair of the base index and another index is a subset of the domain of the structure obtained by replacing/adding a slot at the other index in a structure having a base slot. (Contributed by AV, 7-Jun-2021) (Revised by AV, 16-Nov-2021)

Ref Expression
Hypotheses basprssdmsets.s ( 𝜑𝑆 Struct 𝑋 )
basprssdmsets.i ( 𝜑𝐼𝑈 )
basprssdmsets.w ( 𝜑𝐸𝑊 )
basprssdmsets.b ( 𝜑 → ( Base ‘ ndx ) ∈ dom 𝑆 )
Assertion basprssdmsets ( 𝜑 → { ( Base ‘ ndx ) , 𝐼 } ⊆ dom ( 𝑆 sSet ⟨ 𝐼 , 𝐸 ⟩ ) )

Proof

Step Hyp Ref Expression
1 basprssdmsets.s ( 𝜑𝑆 Struct 𝑋 )
2 basprssdmsets.i ( 𝜑𝐼𝑈 )
3 basprssdmsets.w ( 𝜑𝐸𝑊 )
4 basprssdmsets.b ( 𝜑 → ( Base ‘ ndx ) ∈ dom 𝑆 )
5 4 orcd ( 𝜑 → ( ( Base ‘ ndx ) ∈ dom 𝑆 ∨ ( Base ‘ ndx ) ∈ { 𝐼 } ) )
6 elun ( ( Base ‘ ndx ) ∈ ( dom 𝑆 ∪ { 𝐼 } ) ↔ ( ( Base ‘ ndx ) ∈ dom 𝑆 ∨ ( Base ‘ ndx ) ∈ { 𝐼 } ) )
7 5 6 sylibr ( 𝜑 → ( Base ‘ ndx ) ∈ ( dom 𝑆 ∪ { 𝐼 } ) )
8 snidg ( 𝐼𝑈𝐼 ∈ { 𝐼 } )
9 2 8 syl ( 𝜑𝐼 ∈ { 𝐼 } )
10 9 olcd ( 𝜑 → ( 𝐼 ∈ dom 𝑆𝐼 ∈ { 𝐼 } ) )
11 elun ( 𝐼 ∈ ( dom 𝑆 ∪ { 𝐼 } ) ↔ ( 𝐼 ∈ dom 𝑆𝐼 ∈ { 𝐼 } ) )
12 10 11 sylibr ( 𝜑𝐼 ∈ ( dom 𝑆 ∪ { 𝐼 } ) )
13 7 12 prssd ( 𝜑 → { ( Base ‘ ndx ) , 𝐼 } ⊆ ( dom 𝑆 ∪ { 𝐼 } ) )
14 structex ( 𝑆 Struct 𝑋𝑆 ∈ V )
15 1 14 syl ( 𝜑𝑆 ∈ V )
16 setsdm ( ( 𝑆 ∈ V ∧ 𝐸𝑊 ) → dom ( 𝑆 sSet ⟨ 𝐼 , 𝐸 ⟩ ) = ( dom 𝑆 ∪ { 𝐼 } ) )
17 15 3 16 syl2anc ( 𝜑 → dom ( 𝑆 sSet ⟨ 𝐼 , 𝐸 ⟩ ) = ( dom 𝑆 ∪ { 𝐼 } ) )
18 13 17 sseqtrrd ( 𝜑 → { ( Base ‘ ndx ) , 𝐼 } ⊆ dom ( 𝑆 sSet ⟨ 𝐼 , 𝐸 ⟩ ) )