| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elfz3nn0 |
|- ( K e. ( 0 ... N ) -> N e. NN0 ) |
| 2 |
|
facp1 |
|- ( N e. NN0 -> ( ! ` ( N + 1 ) ) = ( ( ! ` N ) x. ( N + 1 ) ) ) |
| 3 |
1 2
|
syl |
|- ( K e. ( 0 ... N ) -> ( ! ` ( N + 1 ) ) = ( ( ! ` N ) x. ( N + 1 ) ) ) |
| 4 |
|
fznn0sub |
|- ( K e. ( 0 ... N ) -> ( N - K ) e. NN0 ) |
| 5 |
|
facp1 |
|- ( ( N - K ) e. NN0 -> ( ! ` ( ( N - K ) + 1 ) ) = ( ( ! ` ( N - K ) ) x. ( ( N - K ) + 1 ) ) ) |
| 6 |
4 5
|
syl |
|- ( K e. ( 0 ... N ) -> ( ! ` ( ( N - K ) + 1 ) ) = ( ( ! ` ( N - K ) ) x. ( ( N - K ) + 1 ) ) ) |
| 7 |
1
|
nn0cnd |
|- ( K e. ( 0 ... N ) -> N e. CC ) |
| 8 |
|
1cnd |
|- ( K e. ( 0 ... N ) -> 1 e. CC ) |
| 9 |
|
elfznn0 |
|- ( K e. ( 0 ... N ) -> K e. NN0 ) |
| 10 |
9
|
nn0cnd |
|- ( K e. ( 0 ... N ) -> K e. CC ) |
| 11 |
7 8 10
|
addsubd |
|- ( K e. ( 0 ... N ) -> ( ( N + 1 ) - K ) = ( ( N - K ) + 1 ) ) |
| 12 |
11
|
fveq2d |
|- ( K e. ( 0 ... N ) -> ( ! ` ( ( N + 1 ) - K ) ) = ( ! ` ( ( N - K ) + 1 ) ) ) |
| 13 |
11
|
oveq2d |
|- ( K e. ( 0 ... N ) -> ( ( ! ` ( N - K ) ) x. ( ( N + 1 ) - K ) ) = ( ( ! ` ( N - K ) ) x. ( ( N - K ) + 1 ) ) ) |
| 14 |
6 12 13
|
3eqtr4d |
|- ( K e. ( 0 ... N ) -> ( ! ` ( ( N + 1 ) - K ) ) = ( ( ! ` ( N - K ) ) x. ( ( N + 1 ) - K ) ) ) |
| 15 |
14
|
oveq1d |
|- ( K e. ( 0 ... N ) -> ( ( ! ` ( ( N + 1 ) - K ) ) x. ( ! ` K ) ) = ( ( ( ! ` ( N - K ) ) x. ( ( N + 1 ) - K ) ) x. ( ! ` K ) ) ) |
| 16 |
4
|
faccld |
|- ( K e. ( 0 ... N ) -> ( ! ` ( N - K ) ) e. NN ) |
| 17 |
16
|
nncnd |
|- ( K e. ( 0 ... N ) -> ( ! ` ( N - K ) ) e. CC ) |
| 18 |
|
nn0p1nn |
|- ( ( N - K ) e. NN0 -> ( ( N - K ) + 1 ) e. NN ) |
| 19 |
4 18
|
syl |
|- ( K e. ( 0 ... N ) -> ( ( N - K ) + 1 ) e. NN ) |
| 20 |
11 19
|
eqeltrd |
|- ( K e. ( 0 ... N ) -> ( ( N + 1 ) - K ) e. NN ) |
| 21 |
20
|
nncnd |
|- ( K e. ( 0 ... N ) -> ( ( N + 1 ) - K ) e. CC ) |
| 22 |
9
|
faccld |
|- ( K e. ( 0 ... N ) -> ( ! ` K ) e. NN ) |
| 23 |
22
|
nncnd |
|- ( K e. ( 0 ... N ) -> ( ! ` K ) e. CC ) |
| 24 |
17 21 23
|
mul32d |
|- ( K e. ( 0 ... N ) -> ( ( ( ! ` ( N - K ) ) x. ( ( N + 1 ) - K ) ) x. ( ! ` K ) ) = ( ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) x. ( ( N + 1 ) - K ) ) ) |
| 25 |
15 24
|
eqtrd |
|- ( K e. ( 0 ... N ) -> ( ( ! ` ( ( N + 1 ) - K ) ) x. ( ! ` K ) ) = ( ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) x. ( ( N + 1 ) - K ) ) ) |
| 26 |
3 25
|
oveq12d |
|- ( K e. ( 0 ... N ) -> ( ( ! ` ( N + 1 ) ) / ( ( ! ` ( ( N + 1 ) - K ) ) x. ( ! ` K ) ) ) = ( ( ( ! ` N ) x. ( N + 1 ) ) / ( ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) x. ( ( N + 1 ) - K ) ) ) ) |
| 27 |
1
|
faccld |
|- ( K e. ( 0 ... N ) -> ( ! ` N ) e. NN ) |
| 28 |
27
|
nncnd |
|- ( K e. ( 0 ... N ) -> ( ! ` N ) e. CC ) |
| 29 |
|
nn0p1nn |
|- ( N e. NN0 -> ( N + 1 ) e. NN ) |
| 30 |
1 29
|
syl |
|- ( K e. ( 0 ... N ) -> ( N + 1 ) e. NN ) |
| 31 |
30
|
nncnd |
|- ( K e. ( 0 ... N ) -> ( N + 1 ) e. CC ) |
| 32 |
16 22
|
nnmulcld |
|- ( K e. ( 0 ... N ) -> ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) e. NN ) |
| 33 |
|
nncn |
|- ( ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) e. NN -> ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) e. CC ) |
| 34 |
|
nnne0 |
|- ( ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) e. NN -> ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) =/= 0 ) |
| 35 |
33 34
|
jca |
|- ( ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) e. NN -> ( ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) e. CC /\ ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) =/= 0 ) ) |
| 36 |
32 35
|
syl |
|- ( K e. ( 0 ... N ) -> ( ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) e. CC /\ ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) =/= 0 ) ) |
| 37 |
20
|
nnne0d |
|- ( K e. ( 0 ... N ) -> ( ( N + 1 ) - K ) =/= 0 ) |
| 38 |
21 37
|
jca |
|- ( K e. ( 0 ... N ) -> ( ( ( N + 1 ) - K ) e. CC /\ ( ( N + 1 ) - K ) =/= 0 ) ) |
| 39 |
|
divmuldiv |
|- ( ( ( ( ! ` N ) e. CC /\ ( N + 1 ) e. CC ) /\ ( ( ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) e. CC /\ ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) =/= 0 ) /\ ( ( ( N + 1 ) - K ) e. CC /\ ( ( N + 1 ) - K ) =/= 0 ) ) ) -> ( ( ( ! ` N ) / ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) ) x. ( ( N + 1 ) / ( ( N + 1 ) - K ) ) ) = ( ( ( ! ` N ) x. ( N + 1 ) ) / ( ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) x. ( ( N + 1 ) - K ) ) ) ) |
| 40 |
28 31 36 38 39
|
syl22anc |
|- ( K e. ( 0 ... N ) -> ( ( ( ! ` N ) / ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) ) x. ( ( N + 1 ) / ( ( N + 1 ) - K ) ) ) = ( ( ( ! ` N ) x. ( N + 1 ) ) / ( ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) x. ( ( N + 1 ) - K ) ) ) ) |
| 41 |
26 40
|
eqtr4d |
|- ( K e. ( 0 ... N ) -> ( ( ! ` ( N + 1 ) ) / ( ( ! ` ( ( N + 1 ) - K ) ) x. ( ! ` K ) ) ) = ( ( ( ! ` N ) / ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) ) x. ( ( N + 1 ) / ( ( N + 1 ) - K ) ) ) ) |
| 42 |
|
fzelp1 |
|- ( K e. ( 0 ... N ) -> K e. ( 0 ... ( N + 1 ) ) ) |
| 43 |
|
bcval2 |
|- ( K e. ( 0 ... ( N + 1 ) ) -> ( ( N + 1 ) _C K ) = ( ( ! ` ( N + 1 ) ) / ( ( ! ` ( ( N + 1 ) - K ) ) x. ( ! ` K ) ) ) ) |
| 44 |
42 43
|
syl |
|- ( K e. ( 0 ... N ) -> ( ( N + 1 ) _C K ) = ( ( ! ` ( N + 1 ) ) / ( ( ! ` ( ( N + 1 ) - K ) ) x. ( ! ` K ) ) ) ) |
| 45 |
|
bcval2 |
|- ( K e. ( 0 ... N ) -> ( N _C K ) = ( ( ! ` N ) / ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) ) ) |
| 46 |
45
|
oveq1d |
|- ( K e. ( 0 ... N ) -> ( ( N _C K ) x. ( ( N + 1 ) / ( ( N + 1 ) - K ) ) ) = ( ( ( ! ` N ) / ( ( ! ` ( N - K ) ) x. ( ! ` K ) ) ) x. ( ( N + 1 ) / ( ( N + 1 ) - K ) ) ) ) |
| 47 |
41 44 46
|
3eqtr4d |
|- ( K e. ( 0 ... N ) -> ( ( N + 1 ) _C K ) = ( ( N _C K ) x. ( ( N + 1 ) / ( ( N + 1 ) - K ) ) ) ) |