Description: 3impia with the outer implication of the hypothesis a biconditional. (Contributed by Alan Sare, 6-Nov-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | bi13impia.1 | |- ( ( ph /\ ps ) <-> ( ch -> th ) ) | |
| Assertion | bi13impia | |- ( ( ph /\ ps /\ ch ) -> th ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | bi13impia.1 | |- ( ( ph /\ ps ) <-> ( ch -> th ) ) | |
| 2 | 1 | biimpi | |- ( ( ph /\ ps ) -> ( ch -> th ) ) | 
| 3 | 2 | 3impia | |- ( ( ph /\ ps /\ ch ) -> th ) |