Description: 3impia with the outer implication of the hypothesis a biconditional. (Contributed by Alan Sare, 6-Nov-2017)
Ref | Expression | ||
---|---|---|---|
Hypothesis | bi13impia.1 | |- ( ( ph /\ ps ) <-> ( ch -> th ) ) |
|
Assertion | bi13impia | |- ( ( ph /\ ps /\ ch ) -> th ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bi13impia.1 | |- ( ( ph /\ ps ) <-> ( ch -> th ) ) |
|
2 | 1 | biimpi | |- ( ( ph /\ ps ) -> ( ch -> th ) ) |
3 | 2 | 3impia | |- ( ( ph /\ ps /\ ch ) -> th ) |