Description: Adding a superfluous conjunct in a biconditional. (Contributed by Thierry Arnoux, 26-Feb-2017) (Proof shortened by Hongxiu Chen, 29-Jun-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | bian1d.1 | |- ( ph -> ( ps <-> ( ch /\ th ) ) ) |
|
| Assertion | bian1d | |- ( ph -> ( ( ch /\ ps ) <-> ( ch /\ th ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bian1d.1 | |- ( ph -> ( ps <-> ( ch /\ th ) ) ) |
|
| 2 | ibar | |- ( ch -> ( th <-> ( ch /\ th ) ) ) |
|
| 3 | 2 | bicomd | |- ( ch -> ( ( ch /\ th ) <-> th ) ) |
| 4 | 1 3 | sylan9bb | |- ( ( ph /\ ch ) -> ( ps <-> th ) ) |
| 5 | 4 | ex | |- ( ph -> ( ch -> ( ps <-> th ) ) ) |
| 6 | 5 | pm5.32d | |- ( ph -> ( ( ch /\ ps ) <-> ( ch /\ th ) ) ) |