Description: Adding a superfluous conjunct in a biconditional. (Contributed by Thierry Arnoux, 26-Feb-2017) (Proof shortened by Hongxiu Chen, 29-Jun-2025)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | bian1d.1 | ⊢ ( 𝜑 → ( 𝜓 ↔ ( 𝜒 ∧ 𝜃 ) ) ) | |
| Assertion | bian1d | ⊢ ( 𝜑 → ( ( 𝜒 ∧ 𝜓 ) ↔ ( 𝜒 ∧ 𝜃 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bian1d.1 | ⊢ ( 𝜑 → ( 𝜓 ↔ ( 𝜒 ∧ 𝜃 ) ) ) | |
| 2 | ibar | ⊢ ( 𝜒 → ( 𝜃 ↔ ( 𝜒 ∧ 𝜃 ) ) ) | |
| 3 | 2 | bicomd | ⊢ ( 𝜒 → ( ( 𝜒 ∧ 𝜃 ) ↔ 𝜃 ) ) |
| 4 | 1 3 | sylan9bb | ⊢ ( ( 𝜑 ∧ 𝜒 ) → ( 𝜓 ↔ 𝜃 ) ) |
| 5 | 4 | ex | ⊢ ( 𝜑 → ( 𝜒 → ( 𝜓 ↔ 𝜃 ) ) ) |
| 6 | 5 | pm5.32d | ⊢ ( 𝜑 → ( ( 𝜒 ∧ 𝜓 ) ↔ ( 𝜒 ∧ 𝜃 ) ) ) |