Metamath Proof Explorer


Theorem bianassc

Description: An inference to merge two lists of conjuncts. (Contributed by Peter Mazsa, 24-Sep-2022)

Ref Expression
Hypothesis bianass.1
|- ( ph <-> ( ps /\ ch ) )
Assertion bianassc
|- ( ( et /\ ph ) <-> ( ( ps /\ et ) /\ ch ) )

Proof

Step Hyp Ref Expression
1 bianass.1
 |-  ( ph <-> ( ps /\ ch ) )
2 1 bianass
 |-  ( ( et /\ ph ) <-> ( ( et /\ ps ) /\ ch ) )
3 ancom
 |-  ( ( et /\ ps ) <-> ( ps /\ et ) )
4 3 anbi1i
 |-  ( ( ( et /\ ps ) /\ ch ) <-> ( ( ps /\ et ) /\ ch ) )
5 2 4 bitri
 |-  ( ( et /\ ph ) <-> ( ( ps /\ et ) /\ ch ) )