Description: Commute two sides of a biconditional in a deduction. (Contributed by Rodolfo Medina, 19-Oct-2010) (Proof shortened by Andrew Salmon, 29-Jun-2011)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | bicomdd.1 | |- ( ph -> ( ps -> ( ch <-> th ) ) ) | |
| Assertion | bicomdd | |- ( ph -> ( ps -> ( th <-> ch ) ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | bicomdd.1 | |- ( ph -> ( ps -> ( ch <-> th ) ) ) | |
| 2 | bicom | |- ( ( ch <-> th ) <-> ( th <-> ch ) ) | |
| 3 | 1 2 | imbitrdi | |- ( ph -> ( ps -> ( th <-> ch ) ) ) |