Description: Commute two sides of a biconditional in a deduction. (Contributed by Rodolfo Medina, 19-Oct-2010) (Proof shortened by Andrew Salmon, 29-Jun-2011)
Ref | Expression | ||
---|---|---|---|
Hypothesis | bicomdd.1 | |- ( ph -> ( ps -> ( ch <-> th ) ) ) |
|
Assertion | bicomdd | |- ( ph -> ( ps -> ( th <-> ch ) ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | bicomdd.1 | |- ( ph -> ( ps -> ( ch <-> th ) ) ) |
|
2 | bicom | |- ( ( ch <-> th ) <-> ( th <-> ch ) ) |
|
3 | 1 2 | syl6ib | |- ( ph -> ( ps -> ( th <-> ch ) ) ) |