Description: Theorem *4.22 of WhiteheadRussell p. 117. bitri in closed form. (Contributed by NM, 3-Jan-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | bitr | |- ( ( ( ph <-> ps ) /\ ( ps <-> ch ) ) -> ( ph <-> ch ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | bibi1 | |- ( ( ph <-> ps ) -> ( ( ph <-> ch ) <-> ( ps <-> ch ) ) ) |
|
| 2 | 1 | biimpar | |- ( ( ( ph <-> ps ) /\ ( ps <-> ch ) ) -> ( ph <-> ch ) ) |