Metamath Proof Explorer


Theorem bj-0nelmpt

Description: The empty set is not an element of a function (given in maps-to notation). (Contributed by BJ, 30-Dec-2020)

Ref Expression
Assertion bj-0nelmpt
|- -. (/) e. ( x e. A |-> B )

Proof

Step Hyp Ref Expression
1 0nelopab
 |-  -. (/) e. { <. x , y >. | ( x e. A /\ y = B ) }
2 df-mpt
 |-  ( x e. A |-> B ) = { <. x , y >. | ( x e. A /\ y = B ) }
3 2 eqcomi
 |-  { <. x , y >. | ( x e. A /\ y = B ) } = ( x e. A |-> B )
4 3 eleq2i
 |-  ( (/) e. { <. x , y >. | ( x e. A /\ y = B ) } <-> (/) e. ( x e. A |-> B ) )
5 1 4 mtbi
 |-  -. (/) e. ( x e. A |-> B )