Metamath Proof Explorer


Theorem bj-0nelmpt

Description: The empty set is not an element of a function (given in maps-to notation). (Contributed by BJ, 30-Dec-2020)

Ref Expression
Assertion bj-0nelmpt ¬ ∅ ∈ ( 𝑥𝐴𝐵 )

Proof

Step Hyp Ref Expression
1 0nelopab ¬ ∅ ∈ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥𝐴𝑦 = 𝐵 ) }
2 df-mpt ( 𝑥𝐴𝐵 ) = { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥𝐴𝑦 = 𝐵 ) }
3 2 eqcomi { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥𝐴𝑦 = 𝐵 ) } = ( 𝑥𝐴𝐵 )
4 3 eleq2i ( ∅ ∈ { ⟨ 𝑥 , 𝑦 ⟩ ∣ ( 𝑥𝐴𝑦 = 𝐵 ) } ↔ ∅ ∈ ( 𝑥𝐴𝐵 ) )
5 1 4 mtbi ¬ ∅ ∈ ( 𝑥𝐴𝐵 )