Description: The general statement that ax12w proves. (Contributed by BJ, 20-Mar-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | bj-ax12w.1 | |- ( ph -> ( ps <-> ch ) ) | |
| bj-ax12w.2 | |- ( y = z -> ( ps <-> th ) ) | ||
| Assertion | bj-ax12w | |- ( ph -> ( A. y ps -> A. x ( ph -> ps ) ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | bj-ax12w.1 | |- ( ph -> ( ps <-> ch ) ) | |
| 2 | bj-ax12w.2 | |- ( y = z -> ( ps <-> th ) ) | |
| 3 | 2 | spw | |- ( A. y ps -> ps ) | 
| 4 | 1 | bj-ax12wlem | |- ( ph -> ( ps -> A. x ( ph -> ps ) ) ) | 
| 5 | 3 4 | syl5 | |- ( ph -> ( A. y ps -> A. x ( ph -> ps ) ) ) |